A factorization system (E, M) for a category C consists of two classes of morphisms E and M of C such that:
- E and M both contain all isomorphisms of C and are closed under composition.
- Every morphism f of C can be factored as for some morphisms and .
- The factorization is functorial: if and are two morphisms such that for some morphisms and, then there exists a unique morphism making the following diagram commute:
Read more about Factorization System: Orthogonality, Equivalent Definition, Weak Factorization Systems
Famous quotes containing the word system:
“I have no concern with any economic criticisms of the communist system; I cannot enquire into whether the abolition of private property is expedient or advantageous. But I am able to recognize that the psychological premises on which the system is based are an untenable illusion. In abolishing private property we deprive the human love of aggression of one of its instruments ... but we have in no way altered the differences in power and influence which are misused by aggressiveness.”
—Sigmund Freud (18561939)
Related Phrases
Related Words