In combinatorics, the factorial number system, also called factoradic, is a mixed radix numeral system adapted to numbering permutations. It is also called factorial base, although factorials do not function as base, but as place value of digits. By converting a number less than n! to factorial representation, one obtains a sequence of n digits that can be converted to a permutation of n in a straightforward way, either using them as Lehmer code or as inversion table representation; in the former case the resulting map from integers to permutations of n lists them in lexicographical order. General mixed radix systems were studied by Georg Cantor. The term "factorial number system" is used by Knuth, while the French equivalent "numération factorielle" was first used in 1888. The term "factoradic", which is a portmanteau of factorial and mixed radix, appears to be of more recent date.
Read more about Factorial Number System: Definition, Examples, Permutations, Fractional Values
Famous quotes containing the words number and/or system:
“It seems to me that there must be an ecological limit to the number of paper pushers the earth can sustain, and that human civilization will collapse when the number of, say, tax lawyers exceeds the worlds total population of farmers, weavers, fisherpersons, and pediatric nurses.”
—Barbara Ehrenreich (b. 1941)
“Nothing is so well calculated to produce a death-like torpor in the country as an extended system of taxation and a great national debt.”
—William Cobbett (17621835)