In combinatorics, the factorial number system, also called factoradic, is a mixed radix numeral system adapted to numbering permutations. It is also called factorial base, although factorials do not function as base, but as place value of digits. By converting a number less than n! to factorial representation, one obtains a sequence of n digits that can be converted to a permutation of n in a straightforward way, either using them as Lehmer code or as inversion table representation; in the former case the resulting map from integers to permutations of n lists them in lexicographical order. General mixed radix systems were studied by Georg Cantor. The term "factorial number system" is used by Knuth, while the French equivalent "numération factorielle" was first used in 1888. The term "factoradic", which is a portmanteau of factorial and mixed radix, appears to be of more recent date.
Read more about Factorial Number System: Definition, Examples, Permutations, Fractional Values
Famous quotes containing the words number and/or system:
“That country is the richest which nourishes the greatest number of noble and happy human beings.”
—John Ruskin (18191900)
“All who wish to hand down to their children that happy republican system bequeathed to them by their revolutionary fathers, must now take their stand against this consolidating, corrupting money power, and put it down, or their children will become hewers of wood and drawers of water to this aristocratic ragocracy.”
—Andrew Jackson (17671845)