In combinatorics, the factorial number system, also called factoradic, is a mixed radix numeral system adapted to numbering permutations. It is also called factorial base, although factorials do not function as base, but as place value of digits. By converting a number less than n! to factorial representation, one obtains a sequence of n digits that can be converted to a permutation of n in a straightforward way, either using them as Lehmer code or as inversion table representation; in the former case the resulting map from integers to permutations of n lists them in lexicographical order. General mixed radix systems were studied by Georg Cantor. The term "factorial number system" is used by Knuth, while the French equivalent "numération factorielle" was first used in 1888. The term "factoradic", which is a portmanteau of factorial and mixed radix, appears to be of more recent date.
Read more about Factorial Number System: Definition, Examples, Permutations, Fractional Values
Famous quotes containing the words number and/or system:
“My idea is that the world outsidethe so-called modern worldcan only pervert and degrade the conceptions of the primitive instinct of art and feeling, and that our only chance is to accept the limited number of survivorsthe one- in-a-thousand of born artists and poetsand to intensify the energy of feeling within that radiant centre.”
—Henry Brooks Adams (18381918)
“As long as learning is connected with earning, as long as certain jobs can only be reached through exams, so long must we take this examination system seriously. If another ladder to employment was contrived, much so-called education would disappear, and no one would be a penny the stupider.”
—E.M. (Edward Morgan)