Extended Real Number Line - Arithmetic Operations

Arithmetic Operations

The arithmetic operations of R can be partially extended to R as follows:


\begin{align}
a + \infty = +\infty + a & = +\infty, & a & \neq -\infty \\
a - \infty = -\infty + a & = -\infty, & a & \neq +\infty \\
a \cdot (\pm\infty) = \pm\infty \cdot a & = \pm\infty, & a & \in (0, +\infty] \\
a \cdot (\pm\infty) = \pm\infty \cdot a & = \mp\infty, & a & \in [-\infty, 0) \\
\frac{a}{\pm\infty} & = 0, & a & \in \mathbb{R} \\
\frac{\pm\infty}{a} & = \pm\infty, & a & \in \mathbb{R}^+ \\
\frac{\pm\infty}{a} & = \mp\infty, & a & \in \mathbb{R}^-
\end{align}

Here, "a + ∞" means both "a + (+∞)" and "a − (−∞)", and "a − ∞" means both "a − (+∞)" and "a + (−∞)".

The expressions ∞ − ∞, 0 × (±∞) and ±∞ / ±∞ (called indeterminate forms) are usually left undefined. These rules are modeled on the laws for infinite limits. However, in the context of probability or measure theory, 0 × (±∞) is often defined as 0.

The expression 1/0 is not defined either as +∞ or −∞, because although it is true that whenever f(x) → 0 for a continuous function f(x) it must be the case that 1/f(x) is eventually contained in every neighborhood of the set {−∞, +∞}, it is not true that 1/f(x) must tend to one of these points. An example is f(x) = 1/(sin(1/x)). (Its modulus 1/| f(x) |, nevertheless, does approach +∞.)

Read more about this topic:  Extended Real Number Line

Famous quotes containing the words arithmetic and/or operations:

    Under the dominion of an idea, which possesses the minds of multitudes, as civil freedom, or the religious sentiment, the power of persons are no longer subjects of calculation. A nation of men unanimously bent on freedom, or conquest, can easily confound the arithmetic of statists, and achieve extravagant actions, out of all proportion to their means; as, the Greeks, the Saracens, the Swiss, the Americans, and the French have done.
    Ralph Waldo Emerson (1803–1882)

    Plot, rules, nor even poetry, are not half so great beauties in tragedy or comedy as a just imitation of nature, of character, of the passions and their operations in diversified situations.
    Horace Walpole (1717–1797)