Algebraic Properties
With these definitions R is not a field and not even a ring. However, it still has several convenient properties:
- a + (b + c) and (a + b) + c are either equal or both undefined.
- a + b and b + a are either equal or both undefined.
- a × (b × c) and (a × b) × c are either equal or both undefined.
- a × b and b × a are either equal or both undefined
- a × (b + c) and (a × b) + (a × c) are equal if both are defined.
- if a ≤ b and if both a + c and b + c are defined, then a + c ≤ b + c.
- if a ≤ b and c > 0 and both a × c and b × c are defined, then a × c ≤ b × c.
In general, all laws of arithmetic are valid in R as long as all occurring expressions are defined.
Read more about this topic: Extended Real Number Line
Famous quotes containing the words algebraic and/or properties:
“I have no scheme about it,no designs on men at all; and, if I had, my mode would be to tempt them with the fruit, and not with the manure. To what end do I lead a simple life at all, pray? That I may teach others to simplify their lives?and so all our lives be simplified merely, like an algebraic formula? Or not, rather, that I may make use of the ground I have cleared, to live more worthily and profitably?”
—Henry David Thoreau (18171862)
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)