Exponential Sum - Types of Exponential Sum

Types of Exponential Sum

Many types of sums are used in formulating particular problems; applications require usually a reduction to some known type, often by ingenious manipulations. Partial summation can be used to remove coefficients an, in many cases.

A basic distinction is between a complete exponential sum, which is typically a sum over all residue classes modulo some integer N (or more general finite ring), and an incomplete exponential sum where the range of summation is restricted by some inequality. Examples of complete exponential sums are Gauss sums and Kloosterman sums; these are in some sense finite field or finite ring analogues of the gamma function and some sort of Bessel function, respectively, and have many 'structural' properties. An example of an incomplete sum is the partial sum of the quadratic Gauss sum (indeed, the case investigated by Gauss). Here there are good estimates for sums over shorter ranges than the whole set of residue classes, because, in geometric terms, the partial sums approximate a Cornu spiral; this implies massive cancellation.

Auxiliary types of sums occur in the theory, for example character sums; going back to Harold Davenport's thesis. The Weil conjectures had major applications to complete sums with domain restricted by polynomial conditions (i.e., along an algebraic variety over a finite field).

One of the most general types of exponential sum is the Weyl sum, with exponents 2πif(n) where f is a fairly general real-valued smooth function. These are the sums implicated in the distribution of the values

ƒ(n) modulo 1,

according to Weyl's equidistribution criterion. A basic advance was Weyl's inequality for such sums, for polynomial f.

There is a general theory of exponent pairs, which formulates estimates. An important case is where f is logarithmic, in relation with the Riemann zeta function. See also equidistribution theorem.

Read more about this topic:  Exponential Sum

Famous quotes containing the words types of, types and/or sum:

    Science is intimately integrated with the whole social structure and cultural tradition. They mutually support one other—only in certain types of society can science flourish, and conversely without a continuous and healthy development and application of science such a society cannot function properly.
    Talcott Parsons (1902–1979)

    Our major universities are now stuck with an army of pedestrian, toadying careerists, Fifties types who wave around Sixties banners to conceal their record of ruthless, beaverlike tunneling to the top.
    Camille Paglia (b. 1947)

    The more elevated a culture, the richer its language. The number of words and their combinations depends directly on a sum of conceptions and ideas; without the latter there can be no understandings, no definitions, and, as a result, no reason to enrich a language.
    Anton Pavlovich Chekhov (1860–1904)