Types of Exponential Sum
Many types of sums are used in formulating particular problems; applications require usually a reduction to some known type, often by ingenious manipulations. Partial summation can be used to remove coefficients an, in many cases.
A basic distinction is between a complete exponential sum, which is typically a sum over all residue classes modulo some integer N (or more general finite ring), and an incomplete exponential sum where the range of summation is restricted by some inequality. Examples of complete exponential sums are Gauss sums and Kloosterman sums; these are in some sense finite field or finite ring analogues of the gamma function and some sort of Bessel function, respectively, and have many 'structural' properties. An example of an incomplete sum is the partial sum of the quadratic Gauss sum (indeed, the case investigated by Gauss). Here there are good estimates for sums over shorter ranges than the whole set of residue classes, because, in geometric terms, the partial sums approximate a Cornu spiral; this implies massive cancellation.
Auxiliary types of sums occur in the theory, for example character sums; going back to Harold Davenport's thesis. The Weil conjectures had major applications to complete sums with domain restricted by polynomial conditions (i.e., along an algebraic variety over a finite field).
One of the most general types of exponential sum is the Weyl sum, with exponents 2πif(n) where f is a fairly general real-valued smooth function. These are the sums implicated in the distribution of the values
- ƒ(n) modulo 1,
according to Weyl's equidistribution criterion. A basic advance was Weyl's inequality for such sums, for polynomial f.
There is a general theory of exponent pairs, which formulates estimates. An important case is where f is logarithmic, in relation with the Riemann zeta function. See also equidistribution theorem.
Read more about this topic: Exponential Sum
Famous quotes containing the words types of, types and/or sum:
“The wider the range of possibilities we offer children, the more intense will be their motivations and the richer their experiences. We must widen the range of topics and goals, the types of situations we offer and their degree of structure, the kinds and combinations of resources and materials, and the possible interactions with things, peers, and adults.”
—Loris Malaguzzi (19201994)
“... there are two types of happiness and I have chosen that of the murderers. For I am happy. There was a time when I thought I had reached the limit of distress. Beyond that limit, there is a sterile and magnificent happiness.”
—Albert Camus (19131960)
“To die proudly when it is no longer possible to live proudly. Death freely chosen, death at the right time, brightly and cheerfully accomplished amid children and witnesses: then a real farewell is still possible, as the one who is taking leave is still there; also a real estimate of what one has wished, drawing the sum of ones lifeall in opposition to the wretched and revolting comedy that Christianity has made of the hour of death.”
—Friedrich Nietzsche (18441900)