Exponential Sum - Example: The Quadratic Gauss Sum

Example: The Quadratic Gauss Sum

Let p be an odd prime and let . Then the quadratic Gauss sum is given by

\sum_{n=0}^{p-1}\xi^{n^2} =
\begin{cases}
\sqrt{p}, & p = 1 \mod 4 \\
i\sqrt{p}, & p = 3 \mod 4
\end{cases}

where the square roots are taken to be positive.

This is the ideal degree of cancellation one could hope for without any a priori knowledge of the structure of the sum, since it matches the scaling of a random walk.

Read more about this topic:  Exponential Sum

Famous quotes containing the word sum:

    We didn’t come to dig in Egypt for medals. Much more is learned from studying bits of broken pottery than from all the sensational finds. Our job is to increase the sum of human knowledge of the past, not to satisfy our own curiosity.
    John L. Balderston (1899–1954)