Tools and Techniques
Experimental mathematics makes use of numerical methods to calculate approximate values for integrals and infinite series. Arbitrary precision arithmetic is often used to establish these values to a high degree of precision – typically 100 significant figures or more. Integer relation algorithms are then used to search for relations between these values and mathematical constants. Working with high precision values reduces the possibility of mistaking a mathematical coincidence for a true relation. A formal proof of a conjectured relation will then be sought – it is often easier to find a formal proof once the form of a conjectured relation is known.
If a counterexample is being sought or a large-scale proof by exhaustion is being attempted, distributed computing techniques may be used to divide the calculations between multiple computers.
Frequent use is made of general computer algebra systems such as Mathematica, although domain-specific software is also written for attacks on problems that require high efficiency. Experimental mathematics software usually includes error detection and correction mechanisms, integrity checks and redundant calculations designed to minimise the possibility of results being invalidated by a hardware or software error.
Read more about this topic: Experimental Mathematics
Famous quotes containing the words tools and/or techniques:
“A life I didnt choose
chose me: even
my tools are the wrong ones
for what I have to do.”
—Adrienne Rich (b. 1929)
“The techniques of opening conversation are universal. I knew long ago and rediscovered that the best way to attract attention, help, and conversation is to be lost. A man who seeing his mother starving to death on a path kicks her in the stomach to clear the way, will cheerfully devote several hours of his time giving wrong directions to a total stranger who claims to be lost.”
—John Steinbeck (19021968)