Experimental mathematics is an approach to mathematics in which numerical computation is used to investigate mathematical objects and identify properties and patterns. It has been defined as "that branch of mathematics that concerns itself ultimately with the codification and transmission of insights within the mathematical community through the use of experimental (in either the Galilean, Baconian, Aristotelian or Kantian sense) exploration of conjectures and more informal beliefs and a careful analysis of the data acquired in this pursuit."
Read more about Experimental Mathematics: History, Objectives and Uses, Tools and Techniques, Applications and Examples, Open Problems, Plausible But False Examples, Practitioners
Famous quotes containing the words experimental and/or mathematics:
“When we run over libraries persuaded of these principles, what havoc must we make? If we take in our hand any volume; of divinity or school metaphysics, for instance; let us ask, Does it contain any abstract reasoning concerning quantity or number? No. Does it contain any experimental reasoning concerning matter of fact and existence? No. Commit it then to the flames; for it can contain nothing but sophistry and illusion.”
—David Hume (17111776)
“The three main medieval points of view regarding universals are designated by historians as realism, conceptualism, and nominalism. Essentially these same three doctrines reappear in twentieth-century surveys of the philosophy of mathematics under the new names logicism, intuitionism, and formalism.”
—Willard Van Orman Quine (b. 1908)