Euler's Sum of Powers Conjecture

Euler's Sum Of Powers Conjecture

Euler's conjecture is a disproved conjecture in mathematics related to Fermat's last theorem which was proposed by Leonhard Euler in 1769. It states that for all integers n and k greater than 1, if the sum of n kth powers of positive integers is itself a kth power, then n is greater than or equal to k.

In symbols, if 
\sum_{i=1}^{n} a_i^k = b^k
where and are positive integers, then .

The conjecture represents an attempt to generalization of Fermat's last theorem, which could be seen as the special case of n = 2: if, then .

Although the conjecture holds for the case of k = 3 (which follows from Fermat's last theorem for the third powers), it was disproved for k = 4 and k = 5. It still remains unknown if the conjecture fails or holds for any value k ≥ 6.

Read more about Euler's Sum Of Powers Conjecture:  Generalizations

Famous quotes containing the words sum, powers and/or conjecture:

    We didn’t come to dig in Egypt for medals. Much more is learned from studying bits of broken pottery than from all the sensational finds. Our job is to increase the sum of human knowledge of the past, not to satisfy our own curiosity.
    John L. Balderston (1899–1954)

    When, in the course of human events, it becomes necessary for one people to dissolve the political bands which have connected them with another, and to assume the powers of the earth, the separate and equal station to which the laws of nature and of nature’s God entitle them, a decent respect to the opinions of mankind requires that they should declare the causes which impel them to the separation.
    Thomas Jefferson (1743–1826)

    There is something fascinating about science. One gets such wholesale returns of conjecture out of such a trifling investment of fact.
    Mark Twain [Samuel Langhorne Clemens] (1835–1910)