Equivalence Relation - Well-definedness Under An Equivalence Relation

Well-definedness Under An Equivalence Relation

If ~ is an equivalence relation on X, and P(x) is a property of elements of X, such that whenever x ~ y, P(x) is true if P(y) is true, then the property P is said to be well-defined or a class invariant under the relation ~.

A frequent particular case occurs when f is a function from X to another set Y; if x1 ~ x2 implies f(x1) = f(x2) then f is said to be a morphism for ~, a class invariant under ~, or simply invariant under ~. This occurs, e.g. in the character theory of finite groups. The latter case with the function f can be expressed by a commutative triangle. See also invariant. Some authors use "compatible with ~" or just "respects ~" instead of "invariant under ~".

More generally, a function may map equivalent arguments (under an equivalence relation ~A) to equivalent values (under an equivalence relation ~B). Such a function is known as a morphism from ~A to ~B.

Read more about this topic:  Equivalence Relation

Famous quotes containing the word relation:

    Skepticism is unbelief in cause and effect. A man does not see, that, as he eats, so he thinks: as he deals, so he is, and so he appears; he does not see that his son is the son of his thoughts and of his actions; that fortunes are not exceptions but fruits; that relation and connection are not somewhere and sometimes, but everywhere and always; no miscellany, no exemption, no anomaly,—but method, and an even web; and what comes out, that was put in.
    Ralph Waldo Emerson (1803–1882)