Well-definedness Under An Equivalence Relation
If ~ is an equivalence relation on X, and P(x) is a property of elements of X, such that whenever x ~ y, P(x) is true if P(y) is true, then the property P is said to be well-defined or a class invariant under the relation ~.
A frequent particular case occurs when f is a function from X to another set Y; if x1 ~ x2 implies f(x1) = f(x2) then f is said to be a morphism for ~, a class invariant under ~, or simply invariant under ~. This occurs, e.g. in the character theory of finite groups. The latter case with the function f can be expressed by a commutative triangle. See also invariant. Some authors use "compatible with ~" or just "respects ~" instead of "invariant under ~".
More generally, a function may map equivalent arguments (under an equivalence relation ~A) to equivalent values (under an equivalence relation ~B). Such a function is known as a morphism from ~A to ~B.
Read more about this topic: Equivalence Relation
Famous quotes containing the word relation:
“The whole point of Camp is to dethrone the serious. Camp is playful, anti-serious. More precisely, Camp involves a new, more complex relation to the serious. One can be serious about the frivolous, frivolous about the serious.”
—Susan Sontag (b. 1933)