Equivalence Relation - Comparing Equivalence Relations

Comparing Equivalence Relations

If ~ and ≈ are two equivalence relations on the same set S, and a~b implies ab for all a,bS, then ≈ is said to be a coarser relation than ~, and ~ is a finer relation than ≈. Equivalently,

  • ~ is finer than ≈ if every equivalence class of ~ is a subset of an equivalence class of ≈, and thus every equivalence class of ≈ is a union of equivalence classes of ~.
  • ~ is finer than ≈ if the partition created by ~ is a refinement of the partition created by ≈.

The equality equivalence relation is the finest equivalence relation on any set, while the trivial relation that makes all pairs of elements related is the coarsest.

The relation "~ is finer than ≈" on the collection of all equivalence relations on a fixed set is itself a partial order relation.

Read more about this topic:  Equivalence Relation

Famous quotes containing the words comparing and/or relations:

    We cannot think of a legitimate argument why ... whites and blacks need be affected by the knowledge that an aggregate difference in measured intelligence is genetic instead of environmental.... Given a chance, each clan ... will encounter the world with confidence in its own worth and, most importantly, will be unconcerned about comparing its accomplishments line-by-line with those of any other clan. This is wise ethnocentricism.
    Richard Herrnstein (1930–1994)

    The land is the appointed remedy for whatever is false and fantastic in our culture. The continent we inhabit is to be physic and food for our mind, as well as our body. The land, with its tranquilizing, sanative influences, is to repair the errors of a scholastic and traditional education, and bring us to just relations with men and things.
    Ralph Waldo Emerson (1803–1882)