Definition
Formally, given two categories C and D, an equivalence of categories consists of a functor F : C → D, a functor G : D → C, and two natural isomorphisms ε: FG→ID and η : IC→GF. Here FG: D→D and GF: C→C, denote the respective compositions of F and G, and IC: C→C and ID: D→D denote the identity functors on C and D, assigning each object and morphism to itself. If F and G are contravariant functors one speaks of a duality of categories instead.
One often does not specify all the above data. For instance, we say that the categories C and D are equivalent (respectively dually equivalent) if there exists an equivalence (respectively duality) between them. Furthermore, we say that F "is" an equivalence of categories if an inverse functor G and natural isomorphisms as above exist. Note however that knowledge of F is usually not enough to reconstruct G and the natural isomorphisms: there may be many choices (see example below).
Read more about this topic: Equivalence Of Categories
Famous quotes containing the word definition:
“Im beginning to think that the proper definition of Man is an animal that writes letters.”
—Lewis Carroll [Charles Lutwidge Dodgson] (18321898)
“Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.”
—Nadine Gordimer (b. 1923)
“... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lensif we are unaware that women even have a historywe live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.”
—Adrienne Rich (b. 1929)