Equivalence of Categories

In category theory, an abstract branch of mathematics, an equivalence of categories is a relation between two categories that establishes that these categories are "essentially the same". There are numerous examples of categorical equivalences from many areas of mathematics. Establishing an equivalence involves demonstrating strong similarities between the mathematical structures concerned. In some cases, these structures may appear to be unrelated at a superficial or intuitive level, making the notion fairly powerful: it creates the opportunity to "translate" theorems between different kinds of mathematical structures, knowing that the essential meaning of those theorems is preserved under the translation.

If a category is equivalent to the opposite (or dual) of another category then one speaks of a duality of categories, and says that the two categories are dually equivalent.

An equivalence of categories consists of a functor between the involved categories, which is required to have an "inverse" functor. However, in contrast to the situation common for isomorphisms in an algebraic setting, the composition of the functor and its "inverse" is not necessarily the identity mapping. Instead it is sufficient that each object be naturally isomorphic to its image under this composition. Thus one may describe the functors as being "inverse up to isomorphism". There is indeed a concept of isomorphism of categories where a strict form of inverse functor is required, but this is of much less practical use than the equivalence concept.

Read more about Equivalence Of Categories:  Definition, Equivalent Characterizations, Examples, Properties

Famous quotes containing the word categories:

    Of course I’m a black writer.... I’m not just a black writer, but categories like black writer, woman writer and Latin American writer aren’t marginal anymore. We have to acknowledge that the thing we call “literature” is more pluralistic now, just as society ought to be. The melting pot never worked. We ought to be able to accept on equal terms everybody from the Hassidim to Walter Lippmann, from the Rastafarians to Ralph Bunche.
    Toni Morrison (b. 1931)