Envelope (mathematics) - Envelope of A Family of Curves

Envelope of A Family of Curves

Let each curve Ct in the family be given by ft(x, y)=0, where t is a parameter. Write F(t, x, y)=ft(x, y) and assume F is differentiable.

The envelope of the family Ct is then defined as the set of points for which

for some value of t, where is the partial derivative of F with respect to t.

Note that if t and u, tu are two values of the parameter then the intersection of the curves Ct and Cu is given by

or equivalently

Letting u→t gives the definition above.

An important special case is when F(t, x, y) is a polynomial in t. This includes, by clearing denominators, the case where F(t, x, y) is a rational function in t. In this case, the definition amounts to t being a double root of F(t, x, y), so the equation of the envelope can be found by setting the discriminant of F to 0.

For example, let Ct be the line whose x and y intercepts are t and 1−t, this is shown in the animation above. The equation of Ct is

or, clearing fractions,

The equation of the envelope is then

Often when F is not a rational function of the parameter it may be reduced to this case by an appropriate substitution. For example if the family is given by Cθ with an equation of the form u(x, y)cosθ+v(x, y)sinθ=w(x, y), then putting t=eiθ, cosθ=(t+1/t)/2, sinθ=(t-1/t)/2i changes the equation of the curve to

or

The equation of the envelope is then given by setting the discriminant to 0:

or

Read more about this topic:  Envelope (mathematics)

Famous quotes containing the words envelope, family and/or curves:

    Geroge Peatty: I’m gonna have it, Sherry. Hundreds of thousands, maybe a half million.
    Sherry Peatty: Of course you are, darling. Did you put the right address on the envelope when you sent it to the North Pole?
    Stanley Kubrick (b. 1928)

    The family is constantly changing, as each member changes. Some changes we recognize as developments, and the pleasure they bring usually makes us more adaptable. Some changes threaten, or disappoint other members, who may try to resist the change, or punish someone for changing.
    Terri Apter (20th century)

    One way to do it might be by making the scenery penetrate the automobile. A polished black sedan was a good subject, especially if parked at the intersection of a tree-bordered street and one of those heavyish spring skies whose bloated gray clouds and amoeba-shaped blotches of blue seem more physical than the reticent elms and effusive pavement. Now break the body of the car into separate curves and panels; then put it together in terms of reflections.
    Vladimir Nabokov (1899–1977)