Enriched Category - Relationship With Monoidal Functors

Relationship With Monoidal Functors

If there is a monoidal functor from a monoidal category M to a monoidal category N, then any category enriched over M can be reinterpreted as a category enriched over N. Every monoidal category M has a monoidal functor M(I, –) to the category of sets, so any enriched category has an underlying ordinary category. In many examples (such as those above) this functor is faithful, so a category enriched over M can be described as an ordinary category with certain additional structure or properties.

Read more about this topic:  Enriched Category

Famous quotes containing the words relationship with and/or relationship:

    Every man is in a state of conflict, owing to his attempt to reconcile himself and his relationship with life to his conception of harmony. This conflict makes his soul a battlefield, where the forces that wish this reconciliation fight those that do not and reject the alternative solutions they offer. Works of art are attempts to fight out this conflict in the imaginative world.
    Rebecca West (1892–1983)

    If one could be friendly with women, what a pleasure—the relationship so secret and private compared with relations with men. Why not write about it truthfully?
    Virginia Woolf (1882–1941)