Relationship With Monoidal Functors
If there is a monoidal functor from a monoidal category M to a monoidal category N, then any category enriched over M can be reinterpreted as a category enriched over N. Every monoidal category M has a monoidal functor M(I, –) to the category of sets, so any enriched category has an underlying ordinary category. In many examples (such as those above) this functor is faithful, so a category enriched over M can be described as an ordinary category with certain additional structure or properties.
Read more about this topic: Enriched Category
Famous quotes containing the words relationship with and/or relationship:
“We think of religion as the symbolic expression of our highest moral ideals; we think of magic as a crude aggregate of superstitions. Religious belief seems to become mere superstitious credulity if we admit any relationship with magic. On the other hand our anthropological and ethnographical material makes it extremely difficult to separate the two fields.”
—Ernst Cassirer (1874–1945)
“When any relationship is characterized by difference, particularly a disparity in power, there remains a tendency to model it on the parent-child-relationship. Even protectiveness and benevolence toward the poor, toward minorities, and especially toward women have involved equating them with children.”
—Mary Catherine Bateson (20th century)