Examples of Enriched Categories
- Ordinary categories are categories enriched over (Set, ×, {•}), the category of sets with Cartesian product as the monoidal operation, as noted above.
- 2-Categories are categories enriched over Cat, the category of small categories, with monoidal structure being given by cartesian product. In this case the 2-cells between morphisms a → b and the vertical-composition rule that relates them correspond to the morphisms of the ordinary category C(a,b) and its own composition rule.
- Locally small categories are categories enriched over (SmSet, ×), the category of small sets with Cartesian product as the monoidal operation. (A locally small category is one whose hom-objects are small sets.)
- Locally finite categories, by analogy, are categories enriched over (FinSet, ×), the category of finite sets with Cartesian product as the monoidal operation.
- Preordered sets are categories enriched over a certain monoidal category, 2, consisting of two objects and a single nonidentity arrow between them that we can write as FALSE → TRUE, conjunction as the monoid operation, and TRUE as its monoidal identity. The hom-objects 2(a,b) then simply deny or affirm a particular binary relation on the given pair of objects (a,b); for the sake of having more familiar notation we can write this relation as a≤b. The existence of the compositions and identity required for a category enriched over 2 immediately translate to the following axioms respectively
-
- b ≤ c and a ≤ b ⇒ a ≤ c (transitivity)
- TRUE ⇒ a ≤ a (reflexivity)
- which are none other than the axioms for ≤ being a preorder. And since all diagrams in 2 commute, this is the sole content of the enriched category axioms for categories enriched over 2.
- William Lawvere's generalized metric spaces, also known as pseudoquasimetric spaces, are categories enriched over the nonnegative extended real numbers R+∞, where the latter is given ordinary category structure via the inverse of its usual ordering (i.e., there exists a morphism r → s iff r ≥ s) and a monoidal structure via addition (+) and zero (0). The hom-objects R+∞(a,b) are essentially distances d(a,b), and the existence of composition and identity translate to
-
- d(b,c) + d(a,b) ≥ d(a,c) (triangle inequality)
- 0 ≥ d(a,a)
- Categories with zero morphisms are categories enriched over (Set*, ∧), the category of pointed sets with smash product as the monoidal operation; the special point of a hom-object Hom(A,B) corresponds to the zero morphism from A to B.
- Preadditive categories are categories enriched over (Ab, ⊗), the category of abelian groups with tensor product as the monoidal operation.
Read more about this topic: Enriched Category
Famous quotes containing the words examples of, examples, enriched and/or categories:
“There are many examples of women that have excelled in learning, and even in war, but this is no reason we should bring em all up to Latin and Greek or else military discipline, instead of needle-work and housewifry.”
—Bernard Mandeville (16701733)
“Histories are more full of examples of the fidelity of dogs than of friends.”
—Alexander Pope (16881744)
“Their school a crowd, his master solitude;
Through Jonathan Swifts dark grove he passed, and there
Plucked bitter wisdom that enriched his blood.”
—William Butler Yeats (18651939)
“All cultural change reduces itself to a difference of categories. All revolutions, whether in the sciences or world history, occur merely because spirit has changed its categories in order to understand and examine what belongs to it, in order to possess and grasp itself in a truer, deeper, more intimate and unified manner.”
—Georg Wilhelm Friedrich Hegel (17701831)