Examples of Enriched Categories
- Ordinary categories are categories enriched over (Set, ×, {•}), the category of sets with Cartesian product as the monoidal operation, as noted above.
- 2-Categories are categories enriched over Cat, the category of small categories, with monoidal structure being given by cartesian product. In this case the 2-cells between morphisms a → b and the vertical-composition rule that relates them correspond to the morphisms of the ordinary category C(a,b) and its own composition rule.
- Locally small categories are categories enriched over (SmSet, ×), the category of small sets with Cartesian product as the monoidal operation. (A locally small category is one whose hom-objects are small sets.)
- Locally finite categories, by analogy, are categories enriched over (FinSet, ×), the category of finite sets with Cartesian product as the monoidal operation.
- Preordered sets are categories enriched over a certain monoidal category, 2, consisting of two objects and a single nonidentity arrow between them that we can write as FALSE → TRUE, conjunction as the monoid operation, and TRUE as its monoidal identity. The hom-objects 2(a,b) then simply deny or affirm a particular binary relation on the given pair of objects (a,b); for the sake of having more familiar notation we can write this relation as a≤b. The existence of the compositions and identity required for a category enriched over 2 immediately translate to the following axioms respectively
-
- b ≤ c and a ≤ b ⇒ a ≤ c (transitivity)
- TRUE ⇒ a ≤ a (reflexivity)
- which are none other than the axioms for ≤ being a preorder. And since all diagrams in 2 commute, this is the sole content of the enriched category axioms for categories enriched over 2.
- William Lawvere's generalized metric spaces, also known as pseudoquasimetric spaces, are categories enriched over the nonnegative extended real numbers R+∞, where the latter is given ordinary category structure via the inverse of its usual ordering (i.e., there exists a morphism r → s iff r ≥ s) and a monoidal structure via addition (+) and zero (0). The hom-objects R+∞(a,b) are essentially distances d(a,b), and the existence of composition and identity translate to
-
- d(b,c) + d(a,b) ≥ d(a,c) (triangle inequality)
- 0 ≥ d(a,a)
- Categories with zero morphisms are categories enriched over (Set*, ∧), the category of pointed sets with smash product as the monoidal operation; the special point of a hom-object Hom(A,B) corresponds to the zero morphism from A to B.
- Preadditive categories are categories enriched over (Ab, ⊗), the category of abelian groups with tensor product as the monoidal operation.
Read more about this topic: Enriched Category
Famous quotes containing the words examples of, examples, enriched and/or categories:
“It is hardly to be believed how spiritual reflections when mixed with a little physics can hold peoples attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.”
—G.C. (Georg Christoph)
“It is hardly to be believed how spiritual reflections when mixed with a little physics can hold peoples attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.”
—G.C. (Georg Christoph)
“Was I not born in this Realm? Were my parents born in any foreign country?... Is not my Kingdom here? Whom have I oppressed? Whom have I enriched to others harm? What turmoil have I made to this Commonwealth that I should be suspected to have no regard of the same?”
—Elizabeth I (15331603)
“The analogy between the mind and a computer fails for many reasons. The brain is constructed by principles that assure diversity and degeneracy. Unlike a computer, it has no replicative memory. It is historical and value driven. It forms categories by internal criteria and by constraints acting at many scales, not by means of a syntactically constructed program. The world with which the brain interacts is not unequivocally made up of classical categories.”
—Gerald M. Edelman (b. 1928)