E2 Mechanism
During the 1920s, Sir Christopher Ingold proposed a model to explain a peculiar type of chemical reaction; the E2 mechanism. E2 stands for bimolecular elimination.
The fundamental elements of the reaction are as follows:
- One step mechanism in which carbon-hydrogen and carbon-halogen bonds break to form a double bond. C=C Pi bond.
Specificities
- E2 is a one-step process of elimination with a single transition state.
- Typically undergone by primary or secondary substituted alkyl halides
- The reaction rate, influenced by both the alkyl halide and the base (bimolecular), is second order.
- Because E2 mechanism results in formation of a pi bond, the two leaving groups (often a hydrogen and a halogen) need to be antiperiplanar. An antiperiplanar transition state has staggered conformation with lower energy than a synperiplanar transition state which is in eclipsed conformation with higher energy. The reaction mechanism involving staggered conformation is more favorable for E2 reactions (unlike E1 reactions).
- E2 typically uses a strong base, It needs a chemical strong enough to pull off a weakly acidic hydrogen.
- In order for the pi bond to be created, the hybridization of carbons need to be lowered from sp3 to sp2.
- The C-H bond is weakened in the rate determining step and therefore a primary deuterium isotope effect much larger than 1 (commonly 2-6) is observed.
- E2 is very similar to the SN2 reaction mechanism.
An example of this type of reaction in scheme 1 is the reaction of isobutylbromide with potassium ethoxide in ethanol. The reaction products are isobutylene, ethanol and potassium bromide.
Read more about this topic: Elimination Reaction
Famous quotes containing the word mechanism:
“When one of us dies of cancer, loses her mind, or commits suicide, we must not blame her for her inability to survive an ongoing political mechanism bent on the destruction of that human being. Sanity remains defined simply by the ability to cope with insane conditions.”
—Ana Castillo (b. 1953)