Condition Number
Any problem of numeric calculation can be viewed as the evaluation of some function ƒ for some input x. The condition number κ(ƒ, x) of the problem is the ratio of the relative error in the function's output to the relative error in the input, and varies with both the function and the input. The condition number describes how error grows during the calculation. Its base-10 logarithm tells how many fewer digits of accuracy exist in the result than existed in the input. The condition number is a best-case scenario. It reflects the instability built into the problem, regardless of how it is solved. No algorithm can ever produce more accurate results than indicated by the condition number, except by chance. However, a poorly designed algorithm may produce significantly worse results. For example, as mentioned below, the problem of finding eigenvalues for normal matrices is always well-conditioned. However, the problem of finding the roots of a polynomial can be very ill-conditioned. Thus eigenvalue algorithms that work by finding the roots of the characteristic polynomial can be ill-conditioned even when the problem is not.
For the problem of solving the linear equation Av = b where A is invertible, the condition number κ(A, b) is given by ||A||op||A-1||op, where || ||op is the operator norm subordinate to the normal Euclidian norm on C n. Since this number is independent of b, it is usually just called the condition number κ(A) of the matrix A. This value κ(A) is also the absolute value of ratio of the largest eigenvalue of A to its smallest. If A is unitary, then ||A||op = ||A-1||op = 1, so κ(A) = 1. For general matrices, the operator norm is often difficult to calculate. For this reason, other matrix norms are commonly used to estimate the condition number.
For the eigenvalue problem, Bauer and Fike proved that if λ is an eigenvalue for a diagonalizable n × n matrix A with eigenvector matrix V, then the absolute error in calculating λ is bounded by the product of κ(V) and the absolute error in A. As a result, the condition number for finding λ is κ(λ, A) = κ(V) = ||V ||op ||V -1||op. If A is normal, then V is unitary, and κ(λ, A) = 1. Thus the eigenvalue problem for all normal matrices is well-conditioned.
The condition number for the problem of finding the eigenspace of a normal matrix A corresponding to an eigenvalue λ has been shown to be inversely proportional to the minimum distance between λ and the other distinct eigenvalues of A. In particular, the eigenspace problem for normal matrices is well-conditioned for isolated eigenvalues. When eigenvalues are not isolated, the best that can be hoped for is to identify the span of all eigenvectors of nearby eigenvalues.
Read more about this topic: Eigenvalue Algorithm
Famous quotes containing the words condition and/or number:
“I hold the value of life is to improve ones condition. Whatever is calculated to advance the condition of the honest, struggling laboring man, so far as my judgment will enable me to judge of a correct thing, I am for that thing.”
—Abraham Lincoln (18091865)
“Again, the great number of cultivated men keep each other up to a high standard. The habit of meeting well-read and knowing men teaches the art of omission and selection.”
—Ralph Waldo Emerson (18031882)