Hessenberg Matrix

In linear algebra, a Hessenberg matrix is a special kind of square matrix, one that is "almost" triangular. To be exact, an upper Hessenberg matrix has zero entries below the first subdiagonal, and a lower Hessenberg matrix has zero entries above the first superdiagonal. They are named after Karl Hessenberg.

For example:

\begin{bmatrix}
1 & 4 & 2 & 3 \\
3 & 4 & 1 & 7 \\
0 & 2 & 3 & 4 \\
0 & 0 & 1 & 3 \\
\end{bmatrix}

is upper Hessenberg and

\begin{bmatrix}
1 & 2 & 0 & 0 \\
5 & 2 & 3 & 0 \\
3 & 4 & 3 & 7 \\
5 & 6 & 1 & 1 \\
\end{bmatrix}

is lower Hessenberg.

Read more about Hessenberg Matrix:  Computer Programming, Properties

Famous quotes containing the word matrix:

    As all historians know, the past is a great darkness, and filled with echoes. Voices may reach us from it; but what they say to us is imbued with the obscurity of the matrix out of which they come; and try as we may, we cannot always decipher them precisely in the clearer light of our day.
    Margaret Atwood (b. 1939)