The Renormalization Group
Presently, effective field theories are discussed in the context of the renormalization group (RG) where the process of integrating out short distance degrees of freedom is made systematic. Although this method is not sufficiently concrete to allow the actual construction of effective field theories, the gross understanding of their usefulness becomes clear through a RG analysis. This method also lends credence to the main technique of constructing effective field theories, through the analysis of symmetries. If there is a single mass scale M in the microscopic theory, then the effective field theory can be seen as an expansion in 1/M. The construction of an effective field theory accurate to some power of 1/M requires a new set of free parameters at each order of the expansion in 1/M. This technique is useful for scattering or other processes where the maximum momentum scale k satisfies the condition k/M≪1. Since effective field theories are not valid at small length scales, they need not be renormalizable. Indeed, the ever expanding number of parameters at each order in 1/M required for an effective field theory means that they are generally not renormalizable in the same sense as quantum electrodynamics which requires only the renormalization of three parameters.
Read more about this topic: Effective Field Theory
Famous quotes containing the word group:
“No other group in America has so had their identity socialized out of existence as have black women.... When black people are talked about the focus tends to be on black men; and when women are talked about the focus tends to be on white women.”
—bell hooks (b. c. 1955)