Comparison To Classical Dimension
If Z is a subset of 2ω, its Hausdorff dimension is .
The packing dimension of Z is .
Thus the effective Hausdorff and packing dimensions of a set are simply the classical Hausdorff and packing dimensions of (respectively) when we restrict our attention to c.e. gales.
Define the following:
A consequence of the above is that these all have Hausdorff dimension .
and all have packing dimension 1.
and all have packing dimension .
Read more about this topic: Effective Dimension
Famous quotes containing the words comparison to, comparison, classical and/or dimension:
“In comparison to the French Revolution, the American Revolution has come to seem a parochial and rather dull event. This, despite the fact that the American Revolution was successfulrealizing the purposes of the revolutionaries and establishing a durable political regimewhile the French Revolution was a resounding failure, devouring its own children and leading to an imperial despotism, followed by an eventual restoration of the monarchy.”
—Irving Kristol (b. 1920)
“I have travelled a good deal in Concord; and everywhere, in shops, and offices, and fields, the inhabitants have appeared to me to be doing penance in a thousand remarkable ways.... The twelve labors of Hercules were trifling in comparison with those which my neighbors have undertaken; for they were only twelve, and had an end; but I could never see that these men slew or captured any monster or finished any labor.”
—Henry David Thoreau (18171862)
“The basic difference between classical music and jazz is that in the former the music is always greater than its performanceBeethovens Violin Concerto, for instance, is always greater than its performancewhereas the way jazz is performed is always more important than what is being performed.”
—André Previn (b. 1929)
“God cannot be seen: he is too bright for sight; nor grasped: he is too pure for touch; nor measured: for he is beyond all sense, infinite, measureless, his dimension known to himself alone.”
—Marcus Minucius Felix (2nd or 3rd cen. A.D.)