In mathematics, effective dimension is a modification of Hausdorff dimension and other fractal dimensions which places it in a computability theory setting. There are several variations (various notions of effective dimension) of which the most common is effective Hausdorff dimension. Dimension, in mathematics, is a particular way of describing the size of an object (contrasting with measure and other, different, notions of size). Hausdorff dimension generalizes the well-known integer dimensions assigned to points, lines, planes, etc. by allowing one to distinguish between objects of intermediate size between these integer-dimensional objects. For example, fractal subsets of the plane may have intermediate dimension between 1 and 2, as they are "larger" than lines or curves, and yet "smaller" than filled circles or rectangles. Effective dimension modifies Hausdorff dimension by requiring that objects with small effective dimension be not only small but also locatable (or partially locatable) in a computable sense. As such, objects with large Hausdorff dimension also have large effective dimension, and objects with small effective dimension have small Hausdorff dimension, but an object can have small Hausdorff but large effective dimension. An example is an algorithmically random point on a line, which has Hausdorff dimension 0 (since it's a point) but effective dimension 1 (because, roughly speaking, it can't be effectively localized any better than a small interval, which has Hausdorff dimension 1).
Read more about Effective Dimension: Rigorous Definitions, Comparison To Classical Dimension
Famous quotes containing the words effective and/or dimension:
“Before anything else [Numa] decided that he must instill in his subjects the fear of the gods, this being the most effective measure with an ignorant, and at that time uncultured, people.”
—Titus Livius (Livy)
“Le Corbusier was the sort of relentlessly rational intellectual that only France loves wholeheartedly, the logician who flies higher and higher in ever-decreasing circles until, with one last, utterly inevitable induction, he disappears up his own fundamental aperture and emerges in the fourth dimension as a needle-thin umber bird.”
—Tom Wolfe (b. 1931)