Ecological Footprint - Discussion

Discussion

Early criticism was published by van den Bergh and Verbruggen in 1999; another criticism was published in 2008. A more complete review commissioned by the Directorate-General for the Environment (European Commission) and published in June 2008 provides the most updated independent assessment of the method. A number of countries have engaged in research collaborations to test the validity of the method. This includes Switzerland, Germany, United Arab Emirates, and Belgium.

Grazi et al. (2007) have performed a systematic comparison of the ecological footprint method with spatial welfare analysis that includes environmental externalities, agglomeration effects and trade advantages. They find that the two methods can lead to very distinct, and even opposite, rankings of different spatial patterns of economic activity. However, this should not be surprising, since the two methods address different research questions.

Calculating the ecological footprint for densely populated areas, such as a city or small country with a comparatively large population — e.g. New York and Singapore respectively — may lead to the perception of these populations as "parasitic". This is because these communities have little intrinsic biocapacity, and instead must rely upon large hinterlands. Critics argue that this is a dubious characterization since mechanized rural farmers in developed nations may easily consume more resources than urban inhabitants, due to transportation requirements and the unavailability of economies of scale. Furthermore, such moral conclusions seem to be an argument for autarky. Some even take this train of thought a step further, claiming that the Footprint denies the benefits of trade. Therefore, the critics argue that the Footprint can only be applied globally.

The method seems to reward the replacement of original ecosystems with high-productivity agricultural monocultures by assigning a higher biocapacity to such regions. For example, replacing ancient woodlands or tropical forests with monoculture forests or plantations may improve the ecological footprint. Similarly, if organic farming yields were lower than those of conventional methods, this could result in the former being "penalized" with a larger ecological footprint. Of course, this insight, while valid, stems from the idea of using the footprint as one's only metric. If the use of ecological footprints are complemented with other indicators, such as one for biodiversity, the problem could maybe be solved. Indeed, WWF's Living Planet Report complements the biennial Footprint calculations with the Living Planet Index of biodiversity. Manfred Lenzen and Shauna Murray have created a modified Ecological Footprint that takes biodiversity into account for use in Australia.

Although the ecological footprint model prior to 2008 treated nuclear power in the same manner as coal power, the actual real world effects of the two are radically different. A life cycle analysis centered on the Swedish Forsmark Nuclear Power Plant estimated carbon dioxide emissions at 3.10 g/kWh and 5.05 g/kWh in 2002 for the Torness Nuclear Power Station. This compares to 11 g/kWh for hydroelectric power, 950 g/kWh for installed coal, 900 g/kWh for oil and 600 g/kWh for natural gas generation in the United States in 1999. Figures released by Mark Hertsgaard, however, show that because of the delays in building nuclear plants and the costs involved, investments in energy efficiency and renewable energies have seven times the return on investment of investments in nuclear energy.

The Swedish utility Vattenfall did a study of full life cycle emissions of Nuclear, Hydro, Coal, Gas, Solar Cell, Peat and Wind which the utility uses to produce electricity. The net result of the study was that nuclear power produced 3.3 grams of carbon dioxide per KW-Hr of produced power. This compares to 400 for natural gas and 700 for coal (according to this study). The study also concluded that nuclear power produced the smallest amount of CO2 of any of their electricity sources.

Claims exist that the problems of nuclear waste do not come anywhere close to approaching the problems of fossil fuel waste. A 2004 article from the BBC states: "The World Health Organization (WHO) says 3 million people are killed worldwide by outdoor air pollution annually from vehicles and industrial emissions, and 1.6 million indoors through using solid fuel." In the U.S. alone, fossil fuel waste kills 20,000 people each year. A coal power plant releases 100 times as much radiation as a nuclear power plant of the same wattage. It is estimated that during 1982, US coal burning released 155 times as much radioactivity into the atmosphere as the Three Mile Island incident. In addition, fossil fuel waste causes global warming, which leads to increased deaths from hurricanes, flooding, and other weather events. The World Nuclear Association provides a comparison of deaths due to accidents among different forms of energy production. In their comparison, deaths per TW-yr of electricity produced (in UK and USA) from 1970 to 1992 are quoted as 885 for hydropower, 342 for coal, 85 for natural gas, and 8 for nuclear.

Read more about this topic:  Ecological Footprint

Famous quotes containing the word discussion:

    Power is action; the electoral principle is discussion. No political action is possible when discussion is permanently established.
    Honoré De Balzac (1799–1850)

    My companion and I, having a minute’s discussion on some point of ancient history, were amused by the attitude which the Indian, who could not tell what we were talking about, assumed. He constituted himself umpire, and, judging by our air and gesture, he very seriously remarked from time to time, “you beat,” or “he beat.”
    Henry David Thoreau (1817–1862)

    Bigotry is the disease of ignorance, of morbid minds; enthusiasm of the free and buoyant. Education and free discussion are the antidotes of both.
    Thomas Jefferson (1743–1826)