Large Integer Methods
Methods designed for hardware implementation generally do not scale to integers with thousands or millions of decimal digits; these frequently occur, for example, in modular reductions in cryptography. For these large integers, more efficient division algorithms transform the problem to use a small number of multiplications, which can then be done using an asymptotically efficient multiplication algorithm such as the Karatsuba algorithm, Toom–Cook multiplication or the Schönhage–Strassen algorithm. It results that the computational complexity of the division is of the same order (up a multiplicative constant) as that of the multiplication. Examples include reduction to multiplication by Newton's method as described above as well as the slightly faster Barrett reduction algorithm. Newton's method's is particularly efficient in scenarios where one must divide by the same divisor many times, since after the initial Newton inversion only one (truncated) multiplication is needed for each division.
Read more about this topic: Division Algorithm
Famous quotes containing the words large and/or methods:
“While I believe that with a fair election in the South, our electoral vote would reach two hundred, and that we should have a large popular majority, I am yet anxious, as you are, that in the canvassing of results there should be no taint of dishonesty.”
—Rutherford Birchard Hayes (18221893)
“Generalization, especially risky generalization, is one of the chief methods by which knowledge proceeds... Safe generalizations are usually rather boring. Delete that usually rather. Safe generalizations are quite boring.”
—Joseph Epstein (b. 1937)