Large Integer Methods
Methods designed for hardware implementation generally do not scale to integers with thousands or millions of decimal digits; these frequently occur, for example, in modular reductions in cryptography. For these large integers, more efficient division algorithms transform the problem to use a small number of multiplications, which can then be done using an asymptotically efficient multiplication algorithm such as the Karatsuba algorithm, Toom–Cook multiplication or the Schönhage–Strassen algorithm. It results that the computational complexity of the division is of the same order (up a multiplicative constant) as that of the multiplication. Examples include reduction to multiplication by Newton's method as described above as well as the slightly faster Barrett reduction algorithm. Newton's method's is particularly efficient in scenarios where one must divide by the same divisor many times, since after the initial Newton inversion only one (truncated) multiplication is needed for each division.
Read more about this topic: Division Algorithm
Famous quotes containing the words large and/or methods:
“We live under continual threat of two equally fearful, but seemingly opposed, destinies: unremitting banality and inconceivable terror. It is fantasy, served out in large rations by the popular arts, which allows most people to cope with these twin specters.”
—Susan Sontag (b. 1933)
“A woman might claim to retain some of the child’s faculties, although very limited and defused, simply because she has not been encouraged to learn methods of thought and develop a disciplined mind. As long as education remains largely induction ignorance will retain these advantages over learning and it is time that women impudently put them to work.”
—Germaine Greer (b. 1939)