Structure Theorem of Divisible Groups
Let G be a divisible group. One can easily see that the torsion subgroup Tor(G) of G is divisible. Since a divisible group is an injective module, Tor(G) is a direct summand of G. So
As a quotient of a divisible group, G/Tor(G) is divisible. Moreover, it is torsion-free. Thus, it is a vector space over Q and so there exists a set I such that
The structure of the torsion subgroup is harder to determine, but one can show that for all prime numbers p there exists such that
where is the p-primary component of Tor(G).
Thus, if P is the set of prime numbers,
Read more about this topic: Divisible Group
Famous quotes containing the words structure, theorem, divisible and/or groups:
“Who says that fictions only and false hair
Become a verse? Is there in truth no beauty?
Is all good structure in a winding stair?
May no lines pass, except they do their duty
Not to a true, but painted chair?”
—George Herbert (15931633)
“To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.”
—Albert Camus (19131960)
“Knowledge, like matter, [my father] would affirm, was divisible in infinitum;Mthat the grains and scruples were as much a part of it, as the gravitation of the whole world.In a word, he would say, error was error,no matter where it fell,whether in a fraction,or a pound,twas alike fatal to truth.”
—Laurence Sterne (17131768)
“In properly organized groups no faith is required; what is required is simply a little trust and even that only for a little while, for the sooner a man begins to verify all he hears the better it is for him.”
—George Gurdjieff (c. 18771949)