Divisible Group - Structure Theorem of Divisible Groups

Structure Theorem of Divisible Groups

Let G be a divisible group. One can easily see that the torsion subgroup Tor(G) of G is divisible. Since a divisible group is an injective module, Tor(G) is a direct summand of G. So

As a quotient of a divisible group, G/Tor(G) is divisible. Moreover, it is torsion-free. Thus, it is a vector space over Q and so there exists a set I such that

The structure of the torsion subgroup is harder to determine, but one can show that for all prime numbers p there exists such that

where is the p-primary component of Tor(G).

Thus, if P is the set of prime numbers,

Read more about this topic:  Divisible Group

Famous quotes containing the words structure, theorem, divisible and/or groups:

    A structure becomes architectural, and not sculptural, when its elements no longer have their justification in nature.
    Guillaume Apollinaire (1880–1918)

    To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.
    Albert Camus (1913–1960)

    Knowledge, like matter, [my father] would affirm, was divisible in infinitum;Mthat the grains and scruples were as much a part of it, as the gravitation of the whole world.—In a word, he would say, error was error,—no matter where it fell,—whether in a fraction,—or a pound,—’twas alike fatal to truth.
    Laurence Sterne (1713–1768)

    In America every woman has her set of girl-friends; some are cousins, the rest are gained at school. These form a permanent committee who sit on each other’s affairs, who “come out” together, marry and divorce together, and who end as those groups of bustling, heartless well-informed club-women who govern society. Against them the Couple of Ehepaar is helpless and Man in their eyes but a biological interlude.
    Cyril Connolly (1903–1974)