Divisible Group - Structure Theorem of Divisible Groups

Structure Theorem of Divisible Groups

Let G be a divisible group. One can easily see that the torsion subgroup Tor(G) of G is divisible. Since a divisible group is an injective module, Tor(G) is a direct summand of G. So

As a quotient of a divisible group, G/Tor(G) is divisible. Moreover, it is torsion-free. Thus, it is a vector space over Q and so there exists a set I such that

The structure of the torsion subgroup is harder to determine, but one can show that for all prime numbers p there exists such that

where is the p-primary component of Tor(G).

Thus, if P is the set of prime numbers,

Read more about this topic:  Divisible Group

Famous quotes containing the words structure, theorem, divisible and/or groups:

    What is the most rigorous law of our being? Growth. No smallest atom of our moral, mental, or physical structure can stand still a year. It grows—it must grow; nothing can prevent it.
    Mark Twain [Samuel Langhorne Clemens] (1835–1910)

    To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.
    Albert Camus (1913–1960)

    We operate exclusively with things that do not exist, with lines, surfaces, bodies, atoms, divisible time spans, divisible spaces—how could explanations be possible at all when we initially turn everything into images, into our images!
    Friedrich Nietzsche (1844–1900)

    Instead of seeing society as a collection of clearly defined “interest groups,” society must be reconceptualized as a complex network of groups of interacting individuals whose membership and communication patterns are seldom confined to one such group alone.
    Diana Crane (b. 1933)