Divisible Group

In mathematics, especially in the field of group theory, a divisible group is an abelian group in which every element can, in some sense, be divided by positive integers, or more accurately, every element is an nth multiple for each positive integer n. Divisible groups are important in understanding the structure of abelian groups, especially because they are the injective abelian groups.

Read more about Divisible Group:  Definition, Examples, Properties, Structure Theorem of Divisible Groups, Injective Envelope, Reduced Abelian Groups, Generalization

Famous quotes containing the words divisible and/or group:

    We operate exclusively with things that do not exist, with lines, surfaces, bodies, atoms, divisible time spans, divisible spaces—how could explanations be possible at all when we initially turn everything into images, into our images!
    Friedrich Nietzsche (1844–1900)

    Even in harmonious families there is this double life: the group life, which is the one we can observe in our neighbour’s household, and, underneath, another—secret and passionate and intense—which is the real life that stamps the faces and gives character to the voices of our friends. Always in his mind each member of these social units is escaping, running away, trying to break the net which circumstances and his own affections have woven about him.
    Willa Cather (1873–1947)