Discrete Hartley Transform - Fast Algorithms

Fast Algorithms

Just as for the DFT, evaluating the DHT definition directly would require O(N2) arithmetical operations (see Big O notation). There are fast algorithms similar to the FFT, however, that compute the same result in only O(N log N) operations. Nearly every FFT algorithm, from Cooley-Tukey to Prime-Factor to Winograd (Sorensen et al., 1985) to Bruun's (Bini & Bozzo, 1993), has a direct analogue for the discrete Hartley transform. (However, a few of the more exotic FFT algorithms, such as the QFT, have not yet been investigated in the context of the DHT.)

In particular, the DHT analogue of the Cooley-Tukey algorithm is commonly known as the fast Hartley transform (FHT) algorithm, and was first described by Bracewell in 1984. This FHT algorithm, at least when applied to power-of-two sizes N, is the subject of the United States patent number 4,646,256, issued in 1987 to Stanford University. Stanford placed this patent in the public domain in 1994 (Bracewell, 1995).

As mentioned above, DHT algorithms are typically slightly less efficient (in terms of the number of floating-point operations) than the corresponding DFT algorithm (FFT) specialized for real inputs (or outputs). This was first argued by Sorensen et al. (1987) and Duhamel & Vetterli (1987). The latter authors obtained what appears to be the lowest published operation count for the DHT of power-of-two sizes, employing a split-radix algorithm (similar to the split-radix FFT) that breaks a DHT of length N into a DHT of length N/2 and two real-input DFTs (not DHTs) of length N/4. In this way, they argued that a DHT of power-of-two length can be computed with, at best, 2 more additions than the corresponding number of arithmetic operations for the real-input DFT.

On present-day computers, performance is determined more by cache and CPU pipeline considerations than by strict operation counts, and a slight difference in arithmetic cost is unlikely to be significant. Since FHT and real-input FFT algorithms have similar computational structures, neither appears to have a substantial a priori speed advantage (Popovic and Sevic, 1994). As a practical matter, highly optimized real-input FFT libraries are available from many sources (e.g. from CPU vendors such as Intel), whereas highly optimized DHT libraries are less common.

On the other hand, the redundant computations in FFTs due to real inputs are more difficult to eliminate for large prime N, despite the existence of O(N log N) complex-data algorithms for such cases, because the redundancies are hidden behind intricate permutations and/or phase rotations in those algorithms. In contrast, a standard prime-size FFT algorithm, Rader's algorithm, can be directly applied to the DHT of real data for roughly a factor of two less computation than that of the equivalent complex FFT (Frigo and Johnson, 2005). On the other hand, a non-DHT-based adaptation of Rader's algorithm for real-input DFTs is also possible (Chu & Burrus, 1982).

Read more about this topic:  Discrete Hartley Transform

Famous quotes containing the word fast:

    Overly persuasive a woman’s ordinance spreads far, traveling fast; but fast dying a rumor voiced by a woman perishes.
    Aeschylus (525–456 B.C.)