Dirichlet Convolution - Definition

Definition

If ƒ and g are two arithmetic functions (i.e. functions from the positive integers to the complex numbers), one defines a new arithmetic function ƒ * g, the Dirichlet convolution of ƒ and g, by


\begin{align}
(f*g)(n)
&= \sum_{d\,\mid \,n} f(d)g\left(\frac{n}{d}\right) \\
&= \sum_{ab\,=\,n}f(a)g(b)
\end{align}

where the sum extends over all positive divisors d of n, or equivalently over all pairs (a, b) of positive integers whose product is n.

Read more about this topic:  Dirichlet Convolution

Famous quotes containing the word definition:

    The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.
    William James (1842–1910)

    ... we all know the wag’s definition of a philanthropist: a man whose charity increases directly as the square of the distance.
    George Eliot [Mary Ann (or Marian)

    ... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lens—if we are unaware that women even have a history—we live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.
    Adrienne Rich (b. 1929)