Arithmetic Function

Arithmetic Function

In number theory, an arithmetic, arithmetical, or number-theoretic function is a real or complex valued function ƒ(n) defined on the set of natural numbers (i.e. positive integers) that "expresses some arithmetical property of n."

An example of an arithmetic function is the non-principal character (mod 4) defined by


\chi(n) =
\left(\frac{-4}{n}\right)=
\begin{cases}
\;\;\,0 & \mbox{if } n \mbox{ is even}, \\
\;\;\, 1 & \mbox{if } n \equiv 1 \mod 4, \\ -1 & \mbox{if } n \equiv 3 \mod 4.
\end{cases}
where is the Kronecker symbol.

To emphasize that they are being thought of as functions rather than sequences, values of an arithmetic function are usually denoted by a(n) rather than an.

There is a larger class of number-theoretic functions that do not fit the above definition, e.g. the prime-counting functions. This article provides links to functions of both classes.

Read more about Arithmetic Function:  Notation, Multiplicative and Additive Functions, Ω(n), ω(n), νp(n) – Prime Power Decomposition, Summation Functions, Dirichlet Convolution, Relations Among The Functions

Famous quotes containing the words arithmetic and/or function:

    Under the dominion of an idea, which possesses the minds of multitudes, as civil freedom, or the religious sentiment, the power of persons are no longer subjects of calculation. A nation of men unanimously bent on freedom, or conquest, can easily confound the arithmetic of statists, and achieve extravagant actions, out of all proportion to their means; as, the Greeks, the Saracens, the Swiss, the Americans, and the French have done.
    Ralph Waldo Emerson (1803–1882)

    The function of literature, through all its mutations, has been to make us aware of the particularity of selves, and the high authority of the self in its quarrel with its society and its culture. Literature is in that sense subversive.
    Lionel Trilling (1905–1975)