A normal derivative is a directional derivative taken in the direction normal (that is, orthogonal) to some surface in space, or more generally along a normal vector field orthogonal to some hypersurface. See for example Neumann boundary condition. If the normal direction is denoted by, then the directional derivative of a function ƒ is sometimes denoted as . In other notations
Read more about this topic: Directional Derivative
Famous quotes containing the words normal and/or derivative:
“A normal adolescent is so restless and twitchy and awkward that he can mange to injure his kneenot playing soccer, not playing footballbut by falling off his chair in the middle of French class.”
—Judith Viorst (20th century)
“Poor John Field!I trust he does not read this, unless he will improve by it,thinking to live by some derivative old-country mode in this primitive new country.... With his horizon all his own, yet he a poor man, born to be poor, with his inherited Irish poverty or poor life, his Adams grandmother and boggy ways, not to rise in this world, he nor his posterity, till their wading webbed bog-trotting feet get talaria to their heels.”
—Henry David Thoreau (18171862)