In mathematics, the directional derivative of a multivariate differentiable function along a given vector v at a given point x intuitively represents the instantaneous rate of change of the function, moving through x with a velocity specified by v. It therefore generalizes the notion of a partial derivative, in which the rate of change is taken along one of the coordinate curves, all other coordinates being constant.
The directional derivative is a special case of the Gâteaux derivative.
Read more about Directional Derivative: Definition, In Differential Geometry, Normal Derivative, In The Continuum Mechanics of Solids
Famous quotes containing the word derivative:
“Poor John Field!I trust he does not read this, unless he will improve by it,thinking to live by some derivative old-country mode in this primitive new country.... With his horizon all his own, yet he a poor man, born to be poor, with his inherited Irish poverty or poor life, his Adams grandmother and boggy ways, not to rise in this world, he nor his posterity, till their wading webbed bog-trotting feet get talaria to their heels.”
—Henry David Thoreau (18171862)