Directional Derivative - Definition

Definition

The directional derivative of a scalar function

along a vector

is the function defined by the limit

If the function f is differentiable at x, then the directional derivative exists along any vector v, and one has

where the on the right denotes the gradient and is the dot product. At any point x, the directional derivative of f intuitively represents the rate of change in moving at a rate and direction given by v at the point x.

Some authors define the directional derivative to be with respect to the vector v after normalization, thus ignoring its magnitude. In this case, one has

or in case f is differentiable at x,

This definition has several disadvantages: it only applies when the norm of a vector is defined and the vector is not null. It is also incompatible with notation used elsewhere in mathematics, where the space of derivations in a derivation algebra is expected to be a vector space.

Read more about this topic:  Directional Derivative

Famous quotes containing the word definition:

    Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.
    Nadine Gordimer (b. 1923)

    No man, not even a doctor, ever gives any other definition of what a nurse should be than this—”devoted and obedient.” This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.
    Florence Nightingale (1820–1910)

    Mothers often are too easily intimidated by their children’s negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.
    Elaine Heffner (20th century)