Directional Derivative - Definition

Definition

The directional derivative of a scalar function

along a vector

is the function defined by the limit

If the function f is differentiable at x, then the directional derivative exists along any vector v, and one has

where the on the right denotes the gradient and is the dot product. At any point x, the directional derivative of f intuitively represents the rate of change in moving at a rate and direction given by v at the point x.

Some authors define the directional derivative to be with respect to the vector v after normalization, thus ignoring its magnitude. In this case, one has

or in case f is differentiable at x,

This definition has several disadvantages: it only applies when the norm of a vector is defined and the vector is not null. It is also incompatible with notation used elsewhere in mathematics, where the space of derivations in a derivation algebra is expected to be a vector space.

Read more about this topic:  Directional Derivative

Famous quotes containing the word definition:

    Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.
    The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on “life” (based on wording in the First Edition, 1935)

    ... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lens—if we are unaware that women even have a history—we live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.
    Adrienne Rich (b. 1929)

    One definition of man is “an intelligence served by organs.”
    Ralph Waldo Emerson (1803–1882)