Direct Sum of Rings
Given a finite family of rings R1, ..., Rn, the direct product of the Ri is sometimes called the direct sum.
Note that in the category of commutative rings, the direct sum is not the coproduct. Instead, the coproduct is the tensor product of rings.
Read more about this topic: Direct Sum
Famous quotes containing the words direct, sum and/or rings:
“Traditionally in American society, men have been trained for both competition and teamwork through sports, while women have been reared to merge their welfare with that of the family, with fewer opportunities for either independence or other team identifications, and fewer challenges to direct competition. In effect, women have been circumscribed within that unit where the benefit of one is most easily believed to be the benefit of all.”
—Mary Catherine Bateson (b. 1939)
“Wonderful Force of Public Opinion! We must act and walk in all points as it prescribes; follow the traffic it bids us, realise the sum of money, the degree of influence it expects of us, or we shall be lightly esteemed; certain mouthfuls of articulate wind will be blown at us, and this what mortal courage can front?”
—Thomas Carlyle (17951881)
“We will have rings and things, and fine array,
And kiss me, Kate, we will be married o Sunday.”
—William Shakespeare (15641616)