Quantum Mechanical Application
In quantum mechanical and quantum chemical computations matrix diagonalization is one of the most frequently applied numerical processes. The basic reason is that the time-independent Schrödinger equation is an eigenvalue equation, albeit in most of the physical situations on an infinite dimensional space (a Hilbert space). A very common approximation is to truncate Hilbert space to finite dimension, after which the Schrödinger equation can be formulated as an eigenvalue problem of a real symmetric, or complex Hermitian, matrix. Formally this approximation is founded on the variational principle, valid for Hamiltonians that are bounded from below. But also first-order perturbation theory for degenerate states leads to a matrix eigenvalue problem.
Read more about this topic: Diagonalizable Matrix
Famous quotes containing the words quantum, mechanical and/or application:
“The receipt to make a speaker, and an applauded one too, is short and easy.Take of common sense quantum sufficit, add a little application to the rules and orders of the House, throw obvious thoughts in a new light, and make up the whole with a large quantity of purity, correctness, and elegancy of style.”
—Philip Dormer Stanhope, 4th Earl Chesterfield (16941773)
“The correct rate of speed in innovating changes in long-standing social customs has not yet been determined by even the most expert of the experts. Personally I am beginning to think there is more danger in lagging than in speeding up cultural change to keep pace with mechanical change.”
—Mary Barnett Gilson (1877?)
“There are very few things impossible in themselves; and we do not want means to conquer difficulties so much as application and resolution in the use of means.”
—François, Duc De La Rochefoucauld (16131680)