Diagonalizable Matrix - Quantum Mechanical Application

Quantum Mechanical Application

In quantum mechanical and quantum chemical computations matrix diagonalization is one of the most frequently applied numerical processes. The basic reason is that the time-independent Schrödinger equation is an eigenvalue equation, albeit in most of the physical situations on an infinite dimensional space (a Hilbert space). A very common approximation is to truncate Hilbert space to finite dimension, after which the Schrödinger equation can be formulated as an eigenvalue problem of a real symmetric, or complex Hermitian, matrix. Formally this approximation is founded on the variational principle, valid for Hamiltonians that are bounded from below. But also first-order perturbation theory for degenerate states leads to a matrix eigenvalue problem.

Read more about this topic:  Diagonalizable Matrix

Famous quotes containing the words quantum, mechanical and/or application:

    But how is one to make a scientist understand that there is something unalterably deranged about differential calculus, quantum theory, or the obscene and so inanely liturgical ordeals of the precession of the equinoxes.
    Antonin Artaud (1896–1948)

    We are caught up Mr. Perry on a great wave whether we will or no, a great wave of expansion and progress. All these mechanical inventions—telephones, electricity, steel bridges, horseless vehicles—they are all leading somewhere. It’s up to us to be on the inside in the forefront of progress.
    John Dos Passos (1896–1970)

    “Five o’clock tea” is a phrase our “rude forefathers,” even of the last generation, would scarcely have understood, so completely is it a thing of to-day; and yet, so rapid is the March of the Mind, it has already risen into a national institution, and rivals, in its universal application to all ranks and ages, and as a specific for “all the ills that flesh is heir to,” the glorious Magna Charta.
    Lewis Carroll [Charles Lutwidge Dodgson] (1832–1898)