Diagonalizable Matrix - An Application

An Application

Diagonalization can be used to compute the powers of a matrix A efficiently, provided the matrix is diagonalizable. Suppose we have found that

is a diagonal matrix. Then, as the matrix product is associative,

\begin{align} A^k &= (PDP^{-1})^k = (PDP^{-1}) \cdot (PDP^{-1}) \cdots (PDP^{-1}) \\
&= PD(P^{-1}P) D (P^{-1}P) \cdots (P^{-1}P) D P^{-1} \\
&= PD^kP^{-1} \end{align}

and the latter is easy to calculate since it only involves the powers of a diagonal matrix. This approach can be generalized to matrix exponential and other matrix functions since they can be defined as power series.

This is particularly useful in finding closed form expressions for terms of linear recursive sequences, such as the Fibonacci numbers.

Read more about this topic:  Diagonalizable Matrix

Famous quotes containing the word application:

    I conceive that the leading characteristic of the nineteenth century has been the rapid growth of the scientific spirit, the consequent application of scientific methods of investigation to all the problems with which the human mind is occupied, and the correlative rejection of traditional beliefs which have proved their incompetence to bear such investigation.
    Thomas Henry Huxley (1825–95)

    The main object of a revolution is the liberation of man ... not the interpretation and application of some transcendental ideology.
    Jean Genet (1910–1986)