Dedekind Domain - Alternative Definitions

Alternative Definitions

For an integral domain which is not a field, all of the following conditions are equivalent:

(DD1) Every nonzero proper ideal factors into primes.

(DD2) is Noetherian, and the localization at each maximal ideal is a Discrete Valuation Ring.

(DD3) Every fractional ideal of is invertible.

(DD4) is an integrally closed, Noetherian domain with Krull dimension one (i.e., every nonzero prime ideal is maximal).

Thus a Dedekind domain is a domain which satisfies any one, and hence all four, of (DD1) through (DD4). Which of these conditions one takes as the definition is therefore merely a matter of taste. In practice, it is often easiest to verify (DD4).

A Krull domain is a higher dimensional analog of a Dedekind domain: a Dedekind domain that is not a field is a Krull domain of dimension 1. This notion can be used to study the various characterizations of a Dedekind domain. In fact, this is the definition of a Dedekind domain used in Bourbaki's "Commutative algebra".

A Dedekind domain can also be characterized in terms of homological algebra: an integral domain is a Dedekind domain if and only if it is a hereditary ring; i.e., every submodule of a projective module over it is projective. Similarly, an integral domain is a Dedekind domain if and only if every divisible module over it is injective.

Read more about this topic:  Dedekind Domain

Famous quotes containing the words alternative and/or definitions:

    Our mother gives us our earliest lessons in love—and its partner, hate. Our father—our “second other”Melaborates on them. Offering us an alternative to the mother-baby relationship . . . presenting a masculine model which can supplement and contrast with the feminine. And providing us with further and perhaps quite different meanings of lovable and loving and being loved.
    Judith Viorst (20th century)

    Lord Byron is an exceedingly interesting person, and as such is it not to be regretted that he is a slave to the vilest and most vulgar prejudices, and as mad as the winds?
    There have been many definitions of beauty in art. What is it? Beauty is what the untrained eyes consider abominable.
    Edmond De Goncourt (1822–1896)