Virtually Cyclic Groups
A group is called virtually cyclic if it contains a cyclic subgroup of finite index (the number of cosets that the subgroup has). In other words, any element in a virtually cyclic group can be arrived at by applying a member of the cyclic subgroup to a member in a certain finite set. Every cyclic group is virtually cyclic, as is every finite group. It is known that a finitely generated discrete group with exactly two ends is virtually cyclic (for instance the product of Z/n and Z). Every abelian subgroup of a Gromov hyperbolic group is virtually cyclic.
Read more about this topic: Cyclic Group
Famous quotes containing the words virtually and/or groups:
“It may be tempting to focus on the fact that, even among those who support equality, mens involvement as fathers remains a far distance from what most women want and most children need. Yet it is also important to acknowledge how far and how fast many men have moved towards a pattern that not long ago virtually all men considered anathema.”
—Katherine Gerson (20th century)
“Belonging to a group can provide the child with a variety of resources that an individual friendship often cannota sense of collective participation, experience with organizational roles, and group support in the enterprise of growing up. Groups also pose for the child some of the most acute problems of social lifeof inclusion and exclusion, conformity and independence.”
—Zick Rubin (20th century)