Definition
A group G is called cyclic if there exists an element g in G such that G = <g> = { gn | n is an integer }. Since any group generated by an element in a group is a subgroup of that group, showing that the only subgroup of a group G that contains g is G itself suffices to show that G is cyclic.
For example, if G = { g0, g1, g2, g3, g4, g5 } is a group, then g6 = g0, and G is cyclic. In fact, G is essentially the same as (that is, isomorphic to) the set { 0, 1, 2, 3, 4, 5 } with addition modulo 6. For example, 1 + 2 ≡ 3 (mod 6) corresponds to g1·g2 = g3, and 2 + 5 ≡ 1 (mod 6) corresponds to g2·g5 = g7 = g1, and so on. One can use the isomorphism χ defined by χ(gi) = i.
For every positive integer n there is exactly one cyclic group (up to isomorphism) whose order is n, and there is exactly one infinite cyclic group (the integers under addition). Hence, the cyclic groups are the simplest groups and they are completely classified.
The name "cyclic" may be misleading: it is possible to generate infinitely many elements and not form any literal cycles; that is, every gn is distinct. (It can be said that it has one infinitely long cycle.) A group generated in this way is called an infinite cyclic group, and is isomorphic to the additive group of integers Z.
Furthermore, the circle group (whose elements are uncountable) is not a cyclic group—a cyclic group always has countable elements.
Since the cyclic groups are abelian, they are often written additively and denoted Zn. However, this notation can be problematic for number theorists because it conflicts with the usual notation for p-adic number rings or localization at a prime ideal. The quotient notations Z/nZ, Z/n, and Z/(n) are standard alternatives. We adopt the first of these here to avoid the collision of notation. See also the section Subgroups and notation below.
One may write the group multiplicatively, and denote it by Cn, where n is the order (which can be ∞). For example, g2g4 = g1 in C5, whereas 2 + 4 = 1 in Z/5Z.
Read more about this topic: Cyclic Group
Famous quotes containing the word definition:
“It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possessafter many mysterieswhat one loves.”
—François, Duc De La Rochefoucauld (16131680)
“The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.”
—William James (18421910)
“Mothers often are too easily intimidated by their childrens negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.”
—Elaine Heffner (20th century)