Definition
A group G is called cyclic if there exists an element g in G such that G = <g> = { gn | n is an integer }. Since any group generated by an element in a group is a subgroup of that group, showing that the only subgroup of a group G that contains g is G itself suffices to show that G is cyclic.
For example, if G = { g0, g1, g2, g3, g4, g5 } is a group, then g6 = g0, and G is cyclic. In fact, G is essentially the same as (that is, isomorphic to) the set { 0, 1, 2, 3, 4, 5 } with addition modulo 6. For example, 1 + 2 ≡ 3 (mod 6) corresponds to g1·g2 = g3, and 2 + 5 ≡ 1 (mod 6) corresponds to g2·g5 = g7 = g1, and so on. One can use the isomorphism χ defined by χ(gi) = i.
For every positive integer n there is exactly one cyclic group (up to isomorphism) whose order is n, and there is exactly one infinite cyclic group (the integers under addition). Hence, the cyclic groups are the simplest groups and they are completely classified.
The name "cyclic" may be misleading: it is possible to generate infinitely many elements and not form any literal cycles; that is, every gn is distinct. (It can be said that it has one infinitely long cycle.) A group generated in this way is called an infinite cyclic group, and is isomorphic to the additive group of integers Z.
Furthermore, the circle group (whose elements are uncountable) is not a cyclic group—a cyclic group always has countable elements.
Since the cyclic groups are abelian, they are often written additively and denoted Zn. However, this notation can be problematic for number theorists because it conflicts with the usual notation for p-adic number rings or localization at a prime ideal. The quotient notations Z/nZ, Z/n, and Z/(n) are standard alternatives. We adopt the first of these here to avoid the collision of notation. See also the section Subgroups and notation below.
One may write the group multiplicatively, and denote it by Cn, where n is the order (which can be ∞). For example, g2g4 = g1 in C5, whereas 2 + 4 = 1 in Z/5Z.
Read more about this topic: Cyclic Group
Famous quotes containing the word definition:
“No man, not even a doctor, ever gives any other definition of what a nurse should be than thisdevoted and obedient. This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.”
—Florence Nightingale (18201910)
“Scientific method is the way to truth, but it affords, even in
principle, no unique definition of truth. Any so-called pragmatic
definition of truth is doomed to failure equally.”
—Willard Van Orman Quine (b. 1908)
“... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lensif we are unaware that women even have a historywe live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.”
—Adrienne Rich (b. 1929)