Critical Path Method - Basic Technique

Basic Technique

The essential technique for using CPM is to construct a model of the project that includes the following:

  1. A list of all activities required to complete the project (typically categorized within a work breakdown structure),
  2. The time (duration) that each activity will take to completion, and
  3. The dependencies between the activities.

Using these values, CPM calculates the longest path of planned activities to the end of the project, and the earliest and latest that each activity can start and finish without making the project longer. This process determines which activities are "critical" (i.e., on the longest path) and which have "total float" (i.e., can be delayed without making the project longer). In project management, a critical path is the sequence of project network activities which add up to the longest overall duration. This determines the shortest time possible to complete the project. Any delay of an activity on the critical path directly impacts the planned project completion date (i.e. there is no float on the critical path). A project can have several, parallel, near critical paths. An additional parallel path through the network with the total durations shorter than the critical path is called a sub-critical or non-critical path.

Although the activity-on-arrow diagram ("PERT Chart") is still used in a few places, it has generally been superseded by the activity-on-node diagram, where each activity is shown as a box or node and the arrows represent the logical relationships going from predecessor to successor as shown here in the "Activity-on-node diagram".

In this diagram, Activities A, B, C, D, and E comprise the critical or longest path, while Activities F, G, and H are off the critical path with floats of 15 days, 5 days, and 20 days respectively. Whereas activities that are off the critical path have float and are therefore not delaying completion of the project, those on the critical path will usually have critical path drag, i.e., they delay project completion. The drag of a critical path activity can be computed using the following formula:

  1. If a critical path activity has nothing in parallel, its drag is equal to its duration. Thus A and E have drags of 10 days and 20 days respectively.
  2. If a critical path activity has another activity in parallel, its drag is equal to whichever is less: its duration or the total float of the parallel activity with the least total float. Thus since B and C are both parallel to F (float of 15) and H (float of 20), B has a duration of 20 and drag of 15 (equal to F's float), while C has a duration of only 5 days and thus drag of only 5. Activity D, with a duration of 10 days, is parallel to G (float of 5) and H (float of 20) and therefore its drag is equal to 5, the float of G.

These results, including the drag computations, allow managers to prioritize activities for the effective management of project completion, and to shorten the planned critical path of a project by pruning critical path activities, by "fast tracking" (i.e., performing more activities in parallel), and/or by "crashing the critical path" (i.e., shortening the durations of critical path activities by adding resources).

Read more about this topic:  Critical Path Method

Famous quotes containing the words basic and/or technique:

    Man has lost the basic skill of the ape, the ability to scratch its back. Which gave it extraordinary independence, and the liberty to associate for reasons other than the need for mutual back-scratching.
    Jean Baudrillard (b. 1929)

    In love as in art, good technique helps.
    Mason Cooley (b. 1927)