Continuous Functions Between Topological Spaces
Another, more abstract notion of continuity is continuity of functions between topological spaces in which there generally is no formal notion of distance, as in the case of metric spaces. A topological space is a set X together with a topology on X which is a set of subsets of X satisfying a few requirements with respect to their unions and intersections that generalize the properties of the open balls in metric spaces while still allowing to talk about the neighbourhoods of a given point. The elements of a topology are called open subsets of X (with respect to the topology).
A function
between two topological spaces X and Y is continuous if for every open set V ⊆ Y, the inverse image
is an open subset of X. That is, f is a function between the sets X and Y (not on the elements of the topology TX), but the continuity of f depends on the topologies used on X and Y.
This is equivalent to the condition that the preimages of the closed sets (which are the complements of the open subsets) in Y are closed in X.
An extreme example: if a set X is given the discrete topology (in which every subset is open), all functions
to any topological space T are continuous. On the other hand, if X is equipped with the indiscrete topology (in which the only open subsets are the empty set and X) and the space T set is at least T0, then the only continuous functions are the constant functions. Conversely, any function whose range is indiscrete is continuous.
Read more about this topic: Continuous Function
Famous quotes containing the words continuous, functions and/or spaces:
“If an irreducible distinction between theatre and cinema does exist, it may be this: Theatre is confined to a logical or continuous use of space. Cinema ... has access to an alogical or discontinuous use of space.”
—Susan Sontag (b. 1933)
“When Western people train the mind, the focus is generally on the left hemisphere of the cortex, which is the portion of the brain that is concerned with words and numbers. We enhance the logical, bounded, linear functions of the mind. In the East, exercises of this sort are for the purpose of getting in tune with the unconsciousto get rid of boundaries, not to create them.”
—Edward T. Hall (b. 1914)
“When I consider the short duration of my life, swallowed up in the eternity before and after, the little space which I fill and even can see, engulfed in the infinite immensity of spaces of which I am ignorant and which know me not, I am frightened and am astonished at being here rather than there. For there is no reason why here rather than there, why now rather than then.”
—Blaise Pascal (16231662)