L Has A Reflection Principle
Proving that the axiom of separation, axiom of replacement, and axiom of choice hold in L requires (at least as shown above) the use of a reflection principle for L. Here we describe such a principle.
By mathematical induction on n<ω, we can use ZF in V to prove that for any ordinal α, there is an ordinal β>α such that for any sentence P(z1,...,zk) with z1,...,zk in Lβ and containing fewer than n symbols (counting a constant symbol for an element of Lβ as one symbol) we get that P(z1,...,zk) holds in Lβ if and only if it holds in L.
Read more about this topic: Constructible Universe
Famous quotes containing the words reflection and/or principle:
“It is conceivable at least that a late generation, such as we presumably are, has particular need of the sketch, in order not to be strangled to death by inherited conceptions which preclude new births.... The sketch has direction, but no ending; the sketch as reflection of a view of life that is no longer conclusive, or is not yet conclusive.”
—Max Frisch (19111991)
“We have been here over forty years, a longer period than the children of Israel wandered through the wilderness, coming to this Capitol pleading for this recognition of the principle that the Government derives its just powers from the consent of the governed. Mr. Chairman, we ask that you report our resolution favorably if you can but unfavorably if you must; that you report one way or the other, so that the Senate may have the chance to consider it.”
—Anna Howard Shaw (18471919)