L Has A Reflection Principle
Proving that the axiom of separation, axiom of replacement, and axiom of choice hold in L requires (at least as shown above) the use of a reflection principle for L. Here we describe such a principle.
By mathematical induction on n<ω, we can use ZF in V to prove that for any ordinal α, there is an ordinal β>α such that for any sentence P(z1,...,zk) with z1,...,zk in Lβ and containing fewer than n symbols (counting a constant symbol for an element of Lβ as one symbol) we get that P(z1,...,zk) holds in Lβ if and only if it holds in L.
Read more about this topic: Constructible Universe
Famous quotes containing the words reflection and/or principle:
“A little reflection will enable any person to detect in himself that setness in trifles which is the result of the unwatched instinct of self-will and to establish over himself a jealous guardianship.”
—Harriet Beecher Stowe (18111896)
“There is no teaching until the pupil is brought into the same state or principle in which you are; a transfusion takes place; he is you, and you are he; then is a teaching; and by no unfriendly chance or bad company can he ever lose the benefit.”
—Ralph Waldo Emerson (18031882)