Conjunctive Normal Form
In Boolean logic, a formula is in conjunctive normal form (CNF) if it is a conjunction of clauses, where a clause is a disjunction of literals. As a normal form, it is useful in automated theorem proving. It is similar to the product of sums form used in circuit theory.
All conjunctions of literals and all disjunctions of literals are in CNF, as they can be seen as conjunctions of one-literal clauses and conjunctions of a single clause, respectively. As in the disjunctive normal form (DNF), the only propositional connectives a formula in CNF can contain are and, or, and not. The not operator can only be used as part of a literal, which means that it can only precede a propositional variable.
Read more about Conjunctive Normal Form: Examples and Counterexamples, Conversion Into CNF, First-order Logic, Computational Complexity, Converting From First-order Logic
Famous quotes containing the words normal and/or form:
“A few ideas seem to be agreed upon. Help none but those who help themselves. Educate only at schools which provide in some form for industrial education. These two points should be insisted upon. Let the normal instruction be that men must earn their own living, and that by the labor of their hands as far as may be. This is the gospel of salvation for the colored man. Let the labor not be servile, but in manly occupations like that of the carpenter, the farmer, and the blacksmith.”
—Rutherford Birchard Hayes (18221893)
“But labor of the hands, even when pursued to the verge of drudgery, is perhaps never the worst form of idleness. It has a constant and imperishable moral, and to the scholar it yields a classic result.”
—Henry David Thoreau (18171862)