Matrices
For example, the condition number associated with the linear equation Ax = b gives a bound on how inaccurate the solution x will be after approximation. Note that this is before the effects of round-off error are taken into account; conditioning is a property of the matrix, not the algorithm or floating point accuracy of the computer used to solve the corresponding system. In particular, one should think of the condition number as being (very roughly) the rate at which the solution, x, will change with respect to a change in b. Thus, if the condition number is large, even a small error in b may cause a large error in x. On the other hand, if the condition number is small then the error in x will not be much bigger than the error in b.
The condition number is defined more precisely to be the maximum ratio of the relative error in x divided by the relative error in b.
Let e be the error in b. Assuming that A is a square matrix, the error in the solution A−1b is A−1e. The ratio of the relative error in the solution to the relative error in b is
This is easily transformed to
The maximum value (for nonzero b and e) is easily seen to be the product of the two operator norms:
The same definition is used for any consistent norm, i.e. one that satisfies
When the condition number is exactly one, then the algorithm may find an approximation of the solution with an arbitrary precision. However it does not mean that the algorithm will converge rapidly to this solution, just that it won't diverge arbitrarily because of inaccuracy on the source data (backward error), provided that the forward error introduced by the algorithm does not diverge as well because of accumulating intermediate rounding errors.
The condition number may also be infinite, in which case the algorithm will not reliably find a solution to the problem, not even a weak approximation of it (and not even its order of magnitude) with any reasonable and provable accuracy.
Of course, this definition depends on the choice of norm:
- If is the norm (usually noted as ) defined in the square-summable sequence space ℓ2 (which also matches the usual distance in a continuous and isotropic cartesian space), then
- where and are maximal and minimal singular values of respectively.
- Hence
- If is normal then
- where and are maximal and minimal (by moduli) eigenvalues of respectively.
- If is unitary then
- If is normal then
- This number arises so often in numerical linear algebra that it is given a name, the condition number of a matrix.
- If is the norm (usually noted as ) defined in the sequence space ℓ∞ of all bounded sequences (which also matches the non-linear distance measured as the maximum of distances measured on projections into the base subspaces, without requiring the space to be isotropic or even just linear, but only continuous, such norm being definable on all Banach spaces), and is lower triangular non-singular (i.e., ) then
- The condition number computed with this norm is generally larger than the condition number computed with square-summable sequences, but it can be evaluated more easily (and this is often the only measurable condition number, when the problem to solve involves a non-linear algebra, for example when approximating irrational and transcendental functions or numbers with numerical methods.)
If the condition number is close to one, the matrix is well conditioned which means its inverse can be computed with good accuracy. If the condition number is large, then the matrix is said to be ill-conditioned. Practically, such a matrix is almost singular, and the computation of its inverse, or solution of a linear system of equations is prone to large numerical errors. A matrix that is not invertible has the condition number equal to infinity.
Read more about this topic: Condition Number