In the field of numerical analysis, the condition number of a function with respect to an argument measures the asymptotically worst case of how much the function can change in proportion to small changes in the argument. The "function" is the solution of a problem and the "arguments" are the data in the problem.
A problem with a low condition number is said to be well-conditioned, while a problem with a high condition number is said to be ill-conditioned.
The condition number is a property of the problem. Paired with the problem are any number of algorithms that can be used to solve the problem, that is, to calculate the solution. Some algorithms have a property called backward stability. In general, a backward stable algorithm can be expected to accurately solve well-conditioned problems. Numerical analysis textbooks give formulas for the condition numbers of problems and identify the backward stable algorithms.
As a general rule of thumb, if the condition number, then you may lose up to digits of accuracy on top of what would be lost to the numerical method due to loss of precision from arithmetic methods. However, the condition number does not give the exact value of the maximum inaccuracy that may occur in the algorithm. It generally just bounds it with an estimate (whose computed value depends on the choice of the norm to measure the inaccuracy).
Read more about Condition Number: Matrices, Other Contexts
Famous quotes containing the words condition and/or number:
“If the condition of things which we were made for is not yet, what were any reality which we can substitute? We will not be shipwrecked on a vain reality.”
—Henry David Thoreau (18171862)
“To make life more bearable and pleasant for everybody, choose the issues that are significant enough to fight over, and ignore or use distraction for those you can let slide that day. Picking your battles will eliminate a number of conflicts, and yet will still leave you feeling in control.”
—Lawrence Balter (20th century)