Computable Function - Characteristics of Computable Functions

Characteristics of Computable Functions

The basic characteristic of a computable function is that there must be a finite procedure (an algorithm) telling how to compute the function. The models of computation listed above give different interpretations of what a procedure is and how it is used, but these interpretations share many properties. The fact that these models give equivalent classes of computable functions stems from the fact that each model is capable of reading and mimicking a procedure for any of the other models, much as a compiler is able to read instructions in one computer language and emit instructions in another language.

Enderton gives the following characteristics of a procedure for computing a computable function; similar characterizations have been given by Turing, Rogers, and others.

  • "There must be exact instructions (i.e. a program), finite in length, for the procedure."

Thus every computable function must have a finite program that completely describes how the function is to be computed. It is possible to compute the function by just following the instructions; no guessing or special insight is required.

  • "If the procedure is given a k-tuple x in the domain of f, then after a finite number of discrete steps the procedure must terminate and produce f(x)."

Intuitively, the procedure proceeds step by step, with a specific rule to cover what to do at each step of the calculation. Only finitely many steps can be carried out before the value of the function is returned.

  • "If the procedure is given a k-tuple x which is not in the domain of f, then the procedure might go on forever, never halting. Or it might get stuck at some point, but it must not pretend to produce a value for f at x."

Thus if a value for f(x) is ever found, it must be the correct value. It is not necessary for the computing agent to distinguish correct outcomes from incorrect ones because the procedure is always correct when it produces an outcome.

Enderton goes on to list several clarifications of these requirements of the procedure for a computable function:

  • The procedure must theoretically work for arbitrarily large arguments. It is not assumed that the arguments are smaller than the number of atoms in the Earth, for example.
  • The procedure is required to halt after finitely many steps in order to produce an output, but it may take arbitrarily many steps before halting. No time limitation is assumed.
  • Although the procedure may use only a finite amount of storage space during a successful computation, there is no bound on the amount of space that is used. It is assumed that additional storage space can be given to the procedure whenever the procedure asks for it.

The field of computational complexity studies functions with prescribed bounds on the time and/or space allowed in a successful computation.

Read more about this topic:  Computable Function

Famous quotes containing the words characteristics of and/or functions:

    Curiosity is one of the most permanent and certain characteristics of a vigorous intellect.
    Samuel Johnson (1709–1784)

    When Western people train the mind, the focus is generally on the left hemisphere of the cortex, which is the portion of the brain that is concerned with words and numbers. We enhance the logical, bounded, linear functions of the mind. In the East, exercises of this sort are for the purpose of getting in tune with the unconscious—to get rid of boundaries, not to create them.
    Edward T. Hall (b. 1914)