Formal Definition
A partially ordered set (L, ≤) is a complete lattice if every subset A of L has both a greatest lower bound (the infimum, also called the meet) and a least upper bound (the supremum, also called the join) in (L, ≤).
The meet is denoted by, and the join by .
Note that in the special case where A is the empty set the meet of A will be the greatest element of L. Likewise, the join of the empty set yields the least element. Since the definition also assures the existence of binary meets and joins, complete lattices do thus form a special class of bounded lattices.
More implications of the above definition are discussed in the article on completeness properties in order theory.
Read more about this topic: Complete Lattice
Famous quotes containing the words formal and/or definition:
“The manifestation of poetry in external life is formal perfection. True sentiment grows within, and art must represent internal phenomena externally.”
—Franz Grillparzer (17911872)
“The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.”
—Jean Baudrillard (b. 1929)