Complete Lattice

In mathematics, a complete lattice is a partially ordered set in which all subsets have both a supremum (join) and an infimum (meet). Complete lattices appear in many applications in mathematics and computer science. Being a special instance of lattices, they are studied both in order theory and universal algebra.

Complete lattices must not be confused with complete partial orders (cpos), which constitute a strictly more general class of partially ordered sets. More specific complete lattices are complete Boolean algebras and complete Heyting algebras (locales).

Read more about Complete Lattice:  Formal Definition, Examples, Morphisms of Complete Lattices, Representation, Further Results

Famous quotes containing the word complete:

    We are such lovers of self-reliance, that we excuse in a man many sins, if he will show us a complete satisfaction in his position, which asks no leave to be, of mine, or any man’s good opinion.
    Ralph Waldo Emerson (1803–1882)