Complete Group

Complete Group

In mathematics, a group G is said to be complete if every automorphism of G is inner, and the group is a centerless group; that is, it has a trivial outer automorphism group and trivial center. Equivalently, a group is complete if the conjugation map (sending an element g to conjugation by g) is an isomorphism: 1-to-1 corresponds to centerless, onto corresponds to no outer automorphisms.

Read more about Complete Group:  Examples, Properties, Extensions of Complete Groups

Famous quotes containing the words complete and/or group:

    The modern mind is in complete disarray. Knowledge has streched itself to the point where neither the world nor our intelligence can find any foot-hold. It is a fact that we are suffering from nihilism.
    Albert Camus (1913–1960)

    The boys think they can all be athletes, and the girls think they can all be singers. That’s the way to fame and success. ...as a group blacks must give up their illusions.
    Kristin Hunter (b. 1931)