Complete Group

Complete Group

In mathematics, a group G is said to be complete if every automorphism of G is inner, and the group is a centerless group; that is, it has a trivial outer automorphism group and trivial center. Equivalently, a group is complete if the conjugation map (sending an element g to conjugation by g) is an isomorphism: 1-to-1 corresponds to centerless, onto corresponds to no outer automorphisms.

Read more about Complete Group:  Examples, Properties, Extensions of Complete Groups

Famous quotes containing the words complete and/or group:

    A masterpiece is ... something said once and for all, stated, finished, so that it’s there complete in the mind, if only at the back.
    Virginia Woolf (1882–1941)

    Just as a person who is always asserting that he is too good-natured is the very one from whom to expect, on some occasion, the coldest and most unconcerned cruelty, so when any group sees itself as the bearer of civilization this very belief will betray it into behaving barbarously at the first opportunity.
    Simone Weil (1910–1943)