Compact Space - Introduction

Introduction

An example of a compact space is the unit interval of real numbers. If one chooses an infinite number of distinct points in the unit interval, then there must be some accumulation point in that interval. For instance, the odd-numbered terms of the sequence 1, 1/2, 1/3, 3/4, 1/5, 5/6, 1/7, 7/8, … get arbitrarily close to 0, while the even-numbered ones get arbitrarily close to 1. The given example sequence shows the importance of including the boundary points of the interval, since the limit points must be in the space itself: an open (or half-open) interval of the real numbers is not compact. It is also crucial that the interval be bounded, since in the interval [0,∞) one could choose the sequence of points 0, 1, 2, 3, …, of which no sub-sequence ultimately gets arbitrarily close to any given real number.

In two dimensions, closed disks are compact since for any infinite number of points sampled from a disk, some subset of those points must get arbitrarily close either to a point within the disc, or to a point on the boundary. However, an open disk is not compact, because a sequence of points can tend to the boundary without getting arbitrarily close to any point in the interior. Likewise, spheres are compact, but a sphere missing a point is not since a sequence of points can tend to the missing point without tending to any point within the space. Lines and planes are not compact, since one can take a set of equally spaced points in any given direction without approaching any point.

Compactness generalizes many important properties of closed and bounded intervals in the real line; that is, intervals of the form for real numbers a and b. For instance, any continuous function defined on a compact space into an ordered set (with the order topology) such as the real line is bounded. Thus, what is known as the extreme value theorem in calculus generalizes to compact spaces. In this fashion, one can prove many important theorems in the class of compact spaces, that do not hold in the context of non-compact ones.

Various definitions of compactness may apply, depending on the level of generality. A subset of Euclidean space in particular is called compact if it is closed and bounded. This implies, by the Bolzano–Weierstrass theorem, that any infinite sequence from the set has a subsequence that converges to a point in the set. This puts a fine point on the idea of taking "steps" in a space. Various equivalent notions of compactness, such as sequential compactness and limit point compactness, can be developed in general metric spaces.

In general topological spaces, however, the different notions of compactness are not equivalent, and the most useful notion of compactness—originally called bicompactness—involves families of open sets that "cover" the space in the sense that each point of the space must lie in some set contained in the family. Specifically, a topological space is compact if, whenever a collection of open sets covers the space, some subcollection consisting only of finitely many open sets also covers the space. That this form of compactness holds for closed and bounded subsets of Euclidean space is known as the Heine–Borel theorem. Compactness, when defined in this manner, often allows one to take information that is known locally—in a neighborhood of each point of the space—and to extend it to information that holds globally throughout the space. An example of this phenomenon is Dirichlet's theorem, to which it was originally applied by Heine, that a continuous function on a compact interval is uniformly continuous: here continuity is a local property of the function, and uniform continuity the corresponding global property.

Read more about this topic:  Compact Space

Famous quotes containing the word introduction:

    My objection to Liberalism is this—that it is the introduction into the practical business of life of the highest kind—namely, politics—of philosophical ideas instead of political principles.
    Benjamin Disraeli (1804–1881)

    The role of the stepmother is the most difficult of all, because you can’t ever just be. You’re constantly being tested—by the children, the neighbors, your husband, the relatives, old friends who knew the children’s parents in their first marriage, and by yourself.
    —Anonymous Stepparent. Making It as a Stepparent, by Claire Berman, introduction (1980, repr. 1986)

    Such is oftenest the young man’s introduction to the forest, and the most original part of himself. He goes thither at first as a hunter and fisher, until at last, if he has the seeds of a better life in him, he distinguishes his proper objects, as a poet or naturalist it may be, and leaves the gun and fish-pole behind. The mass of men are still and always young in this respect.
    Henry David Thoreau (1817–1862)