Combinatory Logic - Combinatory Logic in Computing

Combinatory Logic in Computing

In computer science, combinatory logic is used as a simplified model of computation, used in computability theory and proof theory. Despite its simplicity, combinatory logic captures many essential features of computation.

Combinatory logic can be viewed as a variant of the lambda calculus, in which lambda expressions (representing functional abstraction) are replaced by a limited set of combinators, primitive functions from which bound variables are absent. It is easy to transform lambda expressions into combinator expressions, and combinator reduction is much simpler than lambda reduction. Hence combinatory logic has been used to model some non-strict functional programming languages and hardware. The purest form of this view is the programming language Unlambda, whose sole primitives are the S and K combinators augmented with character input/output. Although not a practical programming language, Unlambda is of some theoretical interest.

Combinatory logic can be given a variety of interpretations. Many early papers by Curry showed how to translate axiom sets for conventional logic into combinatory logic equations (Hindley and Meredith 1990). Dana Scott in the 1960s and 1970s showed how to marry model theory and combinatory logic.

Read more about this topic:  Combinatory Logic

Famous quotes containing the word logic:

    Histories make men wise; poets witty; the mathematics subtle; natural philosophy deep; moral grave; logic and rhetoric able to contend.
    Francis Bacon (1561–1626)